Highway Safety Analysis for Potential Safety Improvements

US 97 Safety Assessment

Deschutes County, Oregon

Final Report

June 2015

Highway Safety Analysis for Potential Safety Improvements

US 97 Safety Assessment

Deschutes County, Oregon

Prepared For:
Dan Serpico, P.E.
Senior Traffic Analyst
Oregon Department of Transportation
63055 N. Highway 97, Bldg. K
Bend, OR 97701
(541) 388-6170
Prepared By:
Kittelson \& Associates, Inc.
354 SW Upper Terrace Drive, Suite 101
Bend, Oregon 97702
(541) 312-8300
Project Manager: Casey Bergh, P.E.
Project Principal: Hermanus Steyn, P.E.

Project No. 18175.0

June 2015

TABLE OF CONTENTS

Table of Contents iii
Executive Summary 2
Findings 2
Conclusions. 3
Introduction 9
Project Description 9
Study Area 9
Existing Conditions 12
Roadway Characteristics 12
Traffic Characteristics 15
Historical Crash Analysis 15
Field Observations 26
Potential Crash Countermeasures 29
Countermeasure Toolbox. 29
Crash Modification Factors 31
Countermeasure Application. 32
Improvement Alternatives Analysis 35
Benefit 35
Cost of Improvements 38
Project Prioritization. 39
Findings and Conclusions 52
Findings 52
Conclusions. 53

LIST OF FIGURES

Figure 1 US 97 Study Corridor 10
Figure 2 Approach Locations on US 97 13
Figure 3 US 97 Typical Section 14
Figure $4 \quad$ US 97 Crash Map by Severity (2009-2013) 16
Figure $5 \quad$ Crash Frequency and Severity by Year (2009-2013) 18
Figure $6 \quad$ Crash Frequency and Severity by Month (2009-2013) 18
Figure $7 \quad$ Crash Severity by Collision Type (2009-2013) 20
Figure $8 \quad$ Crash Types by Location (2009-2013) 21
Figure $9 \quad$ Lighting Conditions and Crash Severity (2009-2013) 22
Figure 10 Lighting Conditions of Crashes in Corridor (2009-2013) 23
Figure 11 Roadway Conditions and Crash Severity (2009-2013) 24
Figure 12 Roadway Conditions in the Corridor (2009-2013) 25
Figure 13 Example of Inlaid (Recessed) Raised Pavement Markers 29
Figure 14 Example of Speed Feedback Sign 30
Figure 15 Short-Term Projects Map 41
Figure 16 Medium-Term Projects Map 44
Figure 17 Aerial Image of US 97/61 ${ }^{\text {st }}$ Street 48
Figure 18 Median Phasing Concept 50

LIST OF TABLES

Table 1 Short-Term Projects 4
Table 2 Medium-Term Projects 5
Table 3 Median Alternatives and Phasing 6
Table 4 Study Area Available Traffic Volumes 15
Table 5 Crash Severity Distribution 17
Table 6 Crash Rate Comparison. 17
Table $7 \quad$ Collision Type (2009-2013) 19
Table 8 US 97 Corridor Toolbox of Crash Countermeasures 31
Table 9 Potential Countermeasure Improvements by Location 33
Table 10 No-Build Annual Crash History and Prediction Estimates 37
Table 11 Short-Term Projects Benefit-Cost Summary 40
Table 12 Medium-Term Projects Benefit-Cost Summary 43
Table 13 Median Phase 1 Benefit-Cost Summary 47
Table 14 Median Phase 2 Benefit-Cost Summary 48
Table 15 Phase 3 Benefit-Cost Summary 49
Table 16 Phase 4 Median Benefit-Cost Summary 49
Table 17 Short-Term Projects 54
Table 18 Medium-Term Projects 55
Table 19 Median Alternatives and Phasing 56

APPENDICES

Appendix A	Historical Crash Analysis
Appendix B	Countermeasure Crash Modification Factors (CMFs)
Appendix C	No-Build Crash Prediction Analyses
Appendix D	Improvement Costs
Appendix E	Illustration of J-Turn Concept
Appendix F	Median Type Comparison Costs

Section 1 Executive Summary

EXECUTIVE SUMMARY

Kittelson \& Associates, Inc. (KAI) analyzed crash history and evaluated potential crash countermeasures on a 9-mile section of US 97 from the south Redmond city limits (milepost 124.40) to the north Bend city limits (milepost 133.39). This study identified near- and medium-term countermeasures that would cost less than a series of frontage roads that have been identified by ODOT as long-term alternatives. KAI applied quantitative safety evaluation methods to evaluate a range of countermeasures to improve safety along the corridor. The findings and recommendations of the study are summarized below.

FINDINGS

Roadway Characteristics

US 97 is a four-lane rural highway with a posted speed limit of 55 miles per hour (mph). The two travel lanes in each direction are separated by a 10-foot paved median. The study area is shown in Figure 1. The typical cross-section consists of two travel lanes in each direction (12 feet in width), shoulders of 8 to 10 feet in width, and a paved center median of 10 feet in width. The roadway is fairly straight with only a few large horizontal curves in the study area. Driveway density is highest within 0.50 -mile of the City of Bend and City of Redmond limits, in the transition sections from rural to urban areas. One gradeseparated crossing is provided at Deschutes Junction; all other public and private accesses are at-grade.

Historical Crash Analysis

Over the five-year study period (2009-2013), 108 crashes were reported on the US 97 study corridor from milepost (MP) 124.40 to 133.39. A summary of the most-relevant crash trends is provided below.

- Crash types varied throughout the corridor. The three most common crash types were rear-end (25 crashes), fixed object (16 crashes), and sideswipe-meeting (15 crashes).
- 12 reported crashes were fatal or severe injury (injury A) crashes. 37 crashes resulted in a moderate or minor injury (injury B or C), and 59 crashes resulted in property damage only.
- Of the 12 fatal or injury A crashes,
- Fifty percent were head-on crashes, sideswipe meeting crashes, or turning movement crashes - crash types that could be corrected by a median.
- Fifty percent occurred during dark, dawn, or dusk light conditions.
- The most commonly-reported crash cause was "speed too fast for conditions."
- Almost 42 percent of all reported crashes involved snow, ice, or wet roadways.

Field Observations

Field observations were conducted in December 2014 during daylight and dark light conditions. A team consisting of ODOT, Deschutes County, Oregon State Police, and consultants participated in the field visit. Observations from this field visit are summarized below.

- Traffic volumes were higher during the peak hours, making it difficult to find gaps in both directions of traffic to complete a left-turn from the minor street approach to US 97.
- Vehicles were observed using the 10 -foot striped median to complete two-stage left turns from minor-street approaches onto US 97.
- During night-time conditions, it was difficult to see approaching intersections.
- The team discussed that right-turn deceleration lanes and right-turn acceleration lanes would be beneficial at key intersections due to the high traffic volumes and speeds.
- One bicyclist was observed riding along US 97.
- Rock outcroppings were located along the corridor, approximately 30 feet from the edge of the roadway shoulder.
- Driveways are located throughout the corridor, with higher density within 0.50 -mile of the City of Bend and City of Redmond limits.

CONCLUSIONS

KAI prioritized projects aimed at reducing fatal and Injury A crashes as Short-term, Medium-term, or Median projects. Median projects were phased separately from other countermeasures due to the impacts to public and private accesses along the corridor. If a median is carried forward for implementation, ODOT will develop an outreach plan and document key access management principles, as defined in OAR 734-051-7010 and 734-051-1065.

The median projects include U-turn treatments to maintain access to driveways along the corridor that would otherwise be restricted by a median. While a preliminary J-turn concept has been discussed and preliminary design concept is included in this report, there are several other viable designs that provide for safe u-turning maneuvers. More information on design of unsignalized J-turn intersections on state highways is provided in NCHRP Report 745: Left-Turn Accommodations at Unsignalized Intersections. Additional information on the safety and operational effect of U-turns at unsignalized median openings is provided in NCHRP Report 524: Safety of U-Turns at Unsignalized Median Openings.

Each group of projects and their estimated benefit-cost ratios are summarized in Table 1, Table 2, and Table 3. While the magnitude of these B / C ratios may change upon refining the cost estimates, the priority for implementation is not expected to change.

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequency	Short-Term Project Countermeasures	Project CMF	20-Year Crash Reduction	Preliminary 20-Yr Cost Estimate**	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio*
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	19.1	\$ 32,000	\$ 157,100	61.2
Quarry Ln	0.2	0.6	0.5	- Increase sight distance; - Median on minor street approach; - Intersection lighting	82\%	1.8	\$ 28,000	\$ 14,500	6.5
Quarry Ln to 61st Street	5	9.2	7.4	- Inlaid Raised Pavement Markers	93\%	11.0	\$ 14,000	\$90,500	80.6
61st Street	1.2	0.7	0.8	- Intersection lighting; - Median on minor street approach	50\%	7.8	\$ 27,000	\$64,500	29.8
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Inlaid Raised Pavement Markers	93\%	6.0	\$ 9,000	\$ 49,600	68.7
Deschutes Jct.	1.4	0.7	0.8	- Restripe merge	99\%	0.0	\$ 14,000	\$ 500	0.1
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Inlaid Raised Pavement Markers;	93\%	10.3	\$ 14,000	\$85,200	75.8
Ft Thompson Ln	0.6	0.9	0.8	- None	N/A	0.0	\$	\$ -	--
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	12.6	\$ 27,000	\$ 103,800	47.9
Total	21.6	36.4	30.1			68.6	\$ 165,000	\$ 565,000	42.7

${ }^{*} B / C$ Ratios reflect a uniform series present worth factor of 12.46 for a 20-year life span. B / C Ratio $=$ (Annual Benefits X Present Worth Factor)/(Estimated Project Cost)
Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
**Cost estimates exclude any right-of-way impacts or costs.

Table 2 Medium-Term Projects

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequenc	Medium-Term Project Countermeasures	Project CMF	20-Year Crash Reduction	Preliminary 20- Yr Cost Estimate**	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- None	N/A	N/A	N/A	N/A	N/A
Quarry Ln	0.2	0.6	0.5	- Deceleration Lane	93\%	0.7	\$ 188,000	\$ 5,700	0.4
Quarry Ln to 61st Street	5	9.2	7.4	- Segment Lighting; - Increase clear zone (Reduce RHR)	85\%	22.1	\$ 1,413,000	\$ 182,200	1.6
61st Street	1.2	0.7	0.8	- Acceleration Lane; - Deceleration Lane	83\%	2.7	\$ 376,000	\$22,400	0.7
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Increase clear zone (Reduce RHR)	94\%	4.9	\$ 58,000	\$ 40,000	8.6
Deschutes Jct.	1.4	0.7	0.8	- None	N/A	N/A	N/A	\$	N/A
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Increase clear zone (Reduce RHR)	94\%	8.4	\$ 58,000	\$ 69,000	14.8
Ft Thompson Ln	0.6	0.9	0.8	- Intersection lighting; - Median on minor street approach	51\%	8.2	\$27,000	\$67,800	31.3
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Segment Lighting	96\%	2.5	\$ 466,000	\$ 20,700	0.6
Total	21.6	36.4	30.1			49.5	\$ 2,586,000	\$ 407,700	2.0

${ }^{*} B /$ /C Ratios reflect a uniform series present worth factor of 12.46 for a 20 -year life span. B / C Ratio = (Annual Benefits X Present Worth Factor)/(Estimated Project Cost)
Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
**Cost estimates exclude any right-of-way impacts or costs.

Table 3 Median Alternatives and Phasing

Phase	Start and End MP	Number of U- Turns Included	Project Cost (\$)**	Project Benefit (\$)	B/C Ratio
Phase 1	$130.181-132.04$ (MP 132.04 to Deschutes Junction)	One	\$1.5 million	\$4.23 million	2.9
Phase 2	$128.578-130.181$ (Deschutes Junction to 61 ${ }^{\text {st }}$ Street)	One	$\$ 1.6$ million	$\$ 3.00$ million	1.9
Phase 3	$124.40-128.578\left(61^{\text {st }}\right.$ Street to Redmond City Limits)	Two	$\$ 3.7$ million	$\$ 8.36$ million	2.3
Phase 4	$132.04-133.39$ (Phase 1 Median to Bend City Limits)	Two	$\$ 2.2$ million	$\$ 2.97$ million	1.4

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
${ }^{* *}$ Cost estimates assume a concrete barrier median type and J-turn treatment for a conservative analysis. Cost estimates exclude any right-of-way impacts or costs. More details about the cost differences among median types are provided in Appendix F.

Details of each countermeasure by location and project category are provided in the Project Prioritization section under Section 5 of this report. When implementing the proposed countermeasures, KAI suggests:

- Consider implementation of Short-term projects first. They are the most cost-effective and generally do not require additional right-of-way or impact to adjacent properties.
- Consider implementing the Median projects in phases. Phases 1 and 2 could be implemented with two U-turn treatments, when funding becomes available. Phases 1 and 2 address highcrash locations while also minimizing the number of access points impacted by the median. Precede implementation of median and U-turn treatments with a public education campaign, and provide signage to educate drivers how to safely use the U-turn treatment.
- Medium-term projects are cost-effective, but require greater investment than short-term projects. They have potential to impact right-of-way, which would delay implementation.
- Pending successful implementation of Median Phases 1 and 2, Phases 3 and 4 could be implemented, when funding becomes available.

Section 2

Introduction

INTRODUCTION

The Oregon Department of Transportation (ODOT) has requested Kittelson \& Associates, Inc. (KAI) to conduct a safety assessment of a 9-mile section of US 97, from the south Redmond city limits (milepost 124.40) to the north Bend city limits (milepost 133.39).

PROJECT DESCRIPTION

The goals of the US 97 Safety Assessment are to:

- Improve public safety through an evaluation of crash trends and contributing factors,
- Identify effective safety countermeasures, and
- Prioritize projects through a benefit-cost analysis.

This assessment focused on identifying low- and medium-cost countermeasures that could be implemented in the near-term (within approximately 5 years) and medium-term (within approximately 5-15 years). This analysis considers five years of the corridor's historical crash data and applies HSM crash prediction methods on the roadway segments and at the major intersections. These methods remove statistical bias often inherent in crash analysis, due to the random nature of crashes. KAI identified a range of crash countermeasures (low-to-medium cost) and used their documented effectiveness to compare the benefits (expected reduction in crash severity and frequency) to the estimated construction cost (dollars) in a benefit-cost analysis. Based on this analysis, KAI made suggestions for a series of potential corridor safety improvements.

STUDY AREA

The study corridor is a rural four-lane principal arterial running from the south Redmond city limits (MP 124.40) to the north Bend city limits (MP 133.39). The limits of the study are depicted in Figure 1.

Section 3
 Existing Conditions

EXISTING CONDITIONS

The existing conditions analysis identifies factors influencing crash potential, including: traffic characteristics, historical crash analysis, and field observations.

ROADWAY CHARACTERISTICS

US 97 is a rural four-lane principal arterial running north-south within the study area. US 97 serves as a major statewide and regional connection. The highway runs from California to Washington through Central Oregon, with trucks accounting for approximately seven percent of the annual average daily traffic. The study corridor serves as the primary connection between Bend and Redmond, carrying commuter traffic between the cities daily. There are limited alternatives to the north-south corridor.

US 97 provides access to residential, commercial, and industrial properties (including several owned by Central Oregon Irrigation District (COID). Figure 2 shows the locations of the approaches on US 97, based on ODOT's records. Additional properties may have the rights to access even if no access currently exists. The highest functionally-classified roads that intersect US 97 are Deschutes Market Road, $61{ }^{\text {st }}$ Street (Gift Road), and Quarry Avenue. All public and private accesses are at-grade, except the rural grade-separated interchange at Deschutes Market Road. Deschutes Market Road is a Rural Arterial east of the highway and a Rural Collector west of the highway. $61^{\text {st }}$ Street is a Rural Collector, and Quarry Avenue is a Local Street.

As shown in Figure 3, the typical cross-section of US 97 in the study area includes two 12 -foot travel lanes in each direction, separated by a 10 -foot wide striped median. Shoulder widths average approximately 8 -feet throughout the corridor. Centerline and shoulder rumble strips are provided throughout the study corridor. The pavement widens slightly at the intersection with $61^{\text {st }}$ Street to accommodate a northbound left-turn lane.

Figure 3 US 97 Typical Section

TRAFFIC CHARACTERISTICS

Traffic data was inventoried from ODOT's Automated Traffic Recording (ATR) stations, ODOT's TransGIS website, and the Deschutes County Transportation System Plan. New data was not obtained for the purposes of this study. The most-recent traffic count data is summarized in Table 4.

Table 4 Study Area Available Traffic Volumes

Location	Date	AADT	Truck AADT	Source
US 97, at Deschutes Junction	2013	26,700	2,196	TransGIS
US 97, at Quarry Avenue	2013	27,500	2,632	TransGIS
Deschutes Junction, East Leg	2013	3,816	N/A	TransGIS
Deschutes Junction, West Leg	2013	3,697	N/A	TransGIS

Traffic volumes were not available for the majority of the intersections along the corridor. Field observations indicated that volumes of turning vehicles at intersections were highest at Deschutes Junction, followed by $61^{\text {st }}$ Street and then by Quarry Avenue. In the absence of available hourly volumes, field observations also confirmed the peaking characteristics of the traffic during the a.m. and p.m. peak hours when drivers are commuting between Bend and Redmond.

HISTORICAL CRASH ANALYSIS

KAI conducted a review of the crash history over a 5-year study period, from 2009 through 2013. Crash data and crash reports were provided by ODOT. A summary table of all reported crashes over the study period is provided in Appendix A. Over the study period (2009 through 2013), 108 crashes were reported on the US 97 study corridor from MP 124.40 to 133.39. A corridor crash map showing the location and severity of each crash is provided in Figure 4.

Over the five-year study period, 108 crashes were reported on the US 97 study corridor. The crashes were spread throughout the corridor, with the highest frequency occurring at intersections and full milepost numbers. The high frequency at full milepost numbers is likely associated with rounding during the reporting of each crash as there are no geometric changes at each full milepost.

Frequency and Severity

The crash severity distribution of the US 97 study corridor crashes is summarized in Table 5. Table 6 compares the average annual crash rates for the last five years to the statewide average crash rate for rural principal arterials. Compared to the typical crash rates of similar roads in Oregon, the study section of US 97 had lower crash rates. Although the crash rates were not above statewide averages, there are opportunities to reduce the frequency of fatal and severe-injury crashes.

Table 5 Crash Severity Distribution

Corridor / Class	Property Damage Only	Minor Injury	Moderate Injury	Severe Injury	Fatality
US 97 Crashes (2009-2013)	59	23	14	8	4
	54.6%	21.3%	13.0%	7.4%	3.7%
	59	45			
	41.7%	3.7%			

Table 6 Crash Rate Comparison

Crash Rate Type*	Study Corridor Average Crash Rate	Statewide Average Crash Rate for Rural Principal Arterials (2013)
Overall Average Crash Rate (crashes per million VMT)	0.2426	0.72
Fatal and Severe Injury Crash Rate (Crashes per 100 million VMT)	2.6959	5.23
Fatal Crash Rate (Crashes per 100 million VMT)	0.8986	1.72

Note: Oregon crash rates obtained from 2013 Oregon Crash Rate Book.
*Crash rate calculations are based on an average AADT of 27,100 for the 9-mile US 97 study corridor.

Time

The crash frequency and severity are depicted by year and by month in Figure 5 and Figure 6, respectively. Reported crashes ranged between 12 and 33 per year over the study period. Severe crashes - crashes resulting in a severe injury or fatality - typically ranged between two and four per year, with the exception of zero severe crashes in 2013.

Figure $5 \quad$ Crash Frequency and Severity by Year (2009-2013)

Figure $6 \quad$ Crash Frequency and Severity by Month (2009-2013)

Collision Type

Table 7 summarizes the collision types over the study corridor. Crash frequency and severity by collision type is depicted in Figure 7. The severe crashes, those resulting in a fatality or severe injury, included three run-off road crashes, two turning-movement crashes, four crashes involving vehicles traveling opposite directions, two rear-end crashes, and one pedestrian crash. The crash type by corridor location is summarized in Figure 8.

Table 7 Collision Type (2009-2013)

Collision Type	Total Crashes		Fatal and Severe Injury Crashes	
	Frequency	Percent	Frequency	Percent
Run-Off Road	19	17.6	3	25.0
Turning Movement or Angle	11	10.2		
Head On	3	2.8	2	16.7
Sideswipe, Meeting	15	13.9	2	16.7
Sideswipe, Overtaking	11	10.2	--	16.7
Rear End	25	23.0	2	--
Overturned	10	9.3	--	16.7
Animal	12	11.1	--	--
Pedestrian	2	1.9	1	--
Total Crashes	$\mathbf{1 0 8}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 2}$	$\mathbf{1 0 0 \%}$

Figure $7 \quad$ Crash Severity by Collision Type (2009-2013)

Lighting

Figure 9 displays the distribution of crash lighting conditions relative to crash severity, and Figure $\mathbf{1 0}$ displays the distribution of lighting conditions across the corridor. Fifty percent of the reported crashes occurred in non-daylight conditions (dusk, dawn, or dark). Fifty percent of fatal and severe injury crashes occurred during non-daylight conditions.

Figure $9 \quad$ Lighting Conditions and Crash Severity (2009-2013)

Light Conditions for Reported Crashes (2009-2013)

Roadway Conditions

Figure 11 shows the distribution of roadway conditions at the time of the crash and the severity of the crashes. Forty-five crashes (42 percent) occurred on roadways categorized as snow, ice, or wet. However, 67 percent of fatal and severe injury crashes occurred on dry roadways. Figure $\mathbf{1 2}$ shows that the snow, ice, and wet roadway crashes occurred throughout the corridor.

Figure 11 Roadway Conditions and Crash Severity (2009-2013)

Other Factors

Other factors noted in the crash data included excess speed and alcohol use. These factors were found to occur in the following proportion of reported crashes over the study period:

- Excess Speed - "Too fast for conditions" was the most commonly reported crash cause in the crash reports. Not all crash reports included a crash cause, and crash reports can indicate multiple crash causes. Thirty-six crashes indicated speed was a factor. The second most commonly reported crash cause was "Other," with 14 crashes, and "Followed too closely," with 11 crashes. Speed "too fast for conditions" does not necessarily indicate drivers exceeding the posted speed limit; conditions may create a situation in which vehicles need to travel below the speed limit in some cases such as inclement weather.
- Alcohol Use - Crash reports indicate alcohol was involved in 9 of the reported crashes.

FIELD OBSERVATIONS

KAI, ODOT, and Deschutes County conducted a field review of the corridor on December 18, 2014 and December 19, 2014. Team members reviewed the crash history prior to the field visit and drove the corridor several times in daylight and dark conditions. Participants stopped to observe the key intersections along the corridor including Bowery Lane, Deschutes Junction, 61 ${ }^{\text {st }}$ Street, and Quarry Lane. The purpose of the field review was to identify and document the presence and condition of existing facilities and make observations regarding traffic and safety issues. The following provides the findings of the field review.

Observations related to geometric design elements are summarized below.

- Bicycles
- One bicyclist was observed riding along the study corridor during the visit.
- Roadway Segment Observations
- It was difficult to find a gap in major-street traffic to complete a left-turn from the minor street. Vehicles were observed using the 10-foot wide striped median to complete twostage left-turns.
- Rock outcroppings are located throughout the corridor approximately 30 feet from the edge of the roadway shoulder.
- Intersection Observations
- One tree restricts intersection sight distance at the intersection of US 97/Quarry Lane.
- Traffic turning onto US 97 at Deschutes Market Road has an acceleration lane with a merge, but many vehicles continue to stop rather than making the turn and then merging onto US 97 from the east.
- During dark lighting conditions it is difficult to identify intersections in advance - there are limited visual cues to identify intersections.
- $61^{\text {st }}$ Street has a northbound left-turn lane from US 97; no other major-street left-turn lanes are provided on the study segment.

Section 4

Potential Crash Countermeasures

POTENTIAL CRASH COUNTERMEASURES

Potential crash countermeasures were considered to reduce crash potential on the corridor, based on field observations and crash analysis.

COUNTERMEASURE TOOLBOX

Prior to identifying improvements for specific locations along the corridor, a variety of potential crash countermeasure improvements were defined being appropriate to the context of this corridor. This Toolbox of Countermeasures was identified from the Federal Highway Administration (FHWA) Crash Modification Factor (CMF) Clearinghouse, the Highway Safety Manual (HSM), FHWA's Two Low-Cost Safety Concepts for Two-Way Stop-Controlled, Rural Intersection on High-Speed Two-Lane, Two-Way Roadways (FHWA-HRT-08-063), and ODOT's Approved CMF list, among others. The countermeasures are described within the following categories: roadway, roadside, signage, intersection, and lighting.

Roadway Improvements - the roadway category consists of improvements implemented within the roadway's traveled cross-section effecting roadway segment driver behavior and/or traffic operations. The countermeasures identified are designed to reduce roadway/lane departures through increased driver awareness and pavement marking retroreflectivity. One example roadway improvement is inlaid raised pavement markers (RPM), an example of which is provided in Figure 13. The spacing of RPMs can be decreased on approaches to intersections to provide visual warning to drivers. Another example is a raised median, which may take the form of a concrete barrier or a cable median barrier.

Figure 13 Example of Inlaid (Recessed) Raised Pavement Markers
(Source: http://safety.fhwa.dot.gov/roadwaysafetyawards/2013/)
Roadside Improvements - the roadside category consists of improvements implemented within the right-of-way, but outside the normal traveled cross-section. These improvements include improving the roadside design by removing fixed objects in the clear zone and widening the clear zone. Roadside improvements are intended to improve the recoverability of roadway departures and/or reduce the severity of roadway departure crashes.

Signage Improvements - the proposed signage improvements involve installing advanced warning signs prior to key intersections, installing signs with higher grade retroreflectivity, installing larger signs, and
installing speed feedback signs in transition areas between urban and rural areas. Figure 14 shows an example of a speed feedback sign.

Figure 14 Example of Speed Feedback Sign
(Source: http://safety.fhwa.dot.gov/local_rural/training/fhwasa010413spmgmt/)
Intersection Improvements - the intersection category consists of various improvements at specific intersections primarily intended to improve the safety of intersection maneuvers and to increase driver awareness at and on approach to intersections. Intersection improvements include enhanced signage and markings such as larger stop signs, additional stop signs, and a median on the minor street; increasing sight distance at an intersection; installing left-turn lanes; installing or lengthening right-turn deceleration lanes; and installing or lengthening right-turn acceleration lanes.

Lighting - the lighting category consists of additional illumination at intersections and on some segments identified by the crash analysis. The segments are based on locations with the highest percentages of crashes that occurred during dark lighting conditions. The additional lighting would help improve the visibility of the roadway and key intersections at night. These improvements are intended to reduce the number of roadway departure crashes and intersection crashes in dark and dusk lighting conditions.

Table 8 summarizes all countermeasures identified for consideration on the corridor.

Table 8 US 97 Corridor Toolbox of Crash Countermeasures

Countermeasure Category	Common Crash Types	Crash Countermeasures
Roadway	- Run-Off Road - Fixed Object - Overturned Vehicle - Head-On - Non-Daylight Conditions	- Install Inlaid Raised Pavement Markers - Install Raised Median with U-turn to Provide Access to Driveways
Roadside	- Run-Off Road - Fixed Object - Overturned Vehicle	- Improve Roadside Design by Increasing Clear Zone Width
Signage	- Intersection Crashes - Speed-Involved Crashes	- Install Intersection Ahead Warning Signs - Replace Signs with Higher Retroreflectivity or Larger Signs - Install Speed Feedback Signs
Intersection	- Rear-End - Left-Turning - Angle	- Increase Intersection Sight Distance - Install Low-Cost Signing and Marking Treatments, including Minor Street Median - Install Right-Turn Deceleration Lane - Install Left-Turn Lane - Install Right-Turn Acceleration Lane - Restripe Merge
Lighting	- Run-Off Road - Fixed Object - Animal Crashes - Non-Daylight Conditions	- Install Intersection Lighting - Illumination along Key Segments

CRASH MODIFICATION FACTORS

KAI identified crash modification factors (CMFs) for each countermeasure, where available. CMFs were identified from the ODOT Approved List ${ }^{1}$, from the HSM, or the FHWA CMF Clearinghouse database. The FHWA CMF Clearinghouse is maintained by the University of North Carolina Highway Safety Research Center at the following web address: http://www.cmfclearinghouse.org/. A CMF is a multiplicative factor used to compute the expected number of crashes after implementing a given

[^0]countermeasure at a specific site. CMFs have been developed for a variety of countermeasures through decades of safety research; however, CMFs are not available for all countermeasures.

The ODOT list of approved CMFs is intended to provide consistency among projects; it does not prohibit other countermeasures and CMFs from being evaluated. The supporting information provides details about the area(s) a CMF applies to, applicable crash type(s), applicable severity type(s), standard error (if available), and a star rating. The star rating system is managed by the FHWA and denotes the CMF's quality on a one-to-five scale, where five indicates the highest or most reliable rating. CMFs with the highest star ratings were prioritized for use in this analysis, when possible. CMFs with lower star-ratings were used for several countermeasures where no other information was available. These lower-rated CMFs are generally more indicative of a crash reduction trend and should not be heavily relied on for specific crash reduction approximation.

A CMF having a standard error indicates a statistical level of confidence in that countermeasure's effectiveness to reduce crashes. However, standard errors are not included with all CMFs in the CMF Clearinghouse. Therefore, for consistency in this analysis, the average CMF is used for each countermeasure, but it is recognized that each countermeasure's effectiveness to reduce crashes may vary among different locations.

A detailed list of countermeasures and applicable CMFs is provided in Appendix B. More information on the development and application of CMFs is available in Part D of the HSM.

COUNTERMEASURE APPLICATION

The potential improvements within the Countermeasure Toolbox were applied to specific locations taking into consideration the context of the corridor, crash types reported over the 5 -year study period, and contributing factors identified by crash analysis and field reviews. The result was a collection of location-based projects ranging in cost and expected effectiveness. Table 9 summarizes the potential improvements for the specific locations discussed above. As shown, a comprehensive range of countermeasures was identified to address the reported crashes and reduce the potential for future crashes. The following section describes the evaluation process applied to prioritize projects based on expected cost-effectiveness.

Table 9 Potential Countermeasure Improvements by Location

Location	Potential Countermeasures
Redmond City Limits to Quarry Ln	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers - Raised Median
Quarry Ln	- Increase Sight Distance; - Median on minor street approach - Intersection lighting - Right turn Deceleration Lane
Quarry Ln to 61 ${ }^{\text {st }}$ Street	- Inlaid Raised Pavement Markers - Segment Lighting - Increase clear zone (Reduce Roadside Hazard Rating) - Raised Median
61 ${ }^{\text {st }}$ Street	- Intersection lighting - Median on minor street approach - Right turn Deceleration Lane - Acceleration Lane
61 ${ }^{\text {st }}$ Street to Deschutes Jct.	- Inlaid Raised Pavement Markers - Increase clear zone (Reduce RHR from 2 to 1) - Raised Median
Deschutes Jct.	- Restripe Merge
Deschutes Jct. to Ft Thompson Ln	- Inlaid Raised Pavement Markers - Increase clear zone (Reduce RHR from 2 to 1) - Raised Median
Ft Thompson Ln	- Intersection lighting; - Median on minor street approach
Ft Thompson Ln to Bend City Limits	- Install speed feedback signs in transition zone; - Inlaid Raised Pavement Markers - Segment Lighting - Raised Median

*Note: The shading is used to help differentiate between locations (shaded - intersections; non-shaded - roadway segments)

Section 5

Improvement Alternatives Analysis

IMPROVEMENT ALTERNATIVES ANALYSIS

Countermeasures identified in Section 4 were grouped into projects at each intersection and within each segment. The expected crash reduction potential of countermeasures (as indicated by CMFs described in Section 4 and provided in Appendix B) was used to establish initial project groups. Crash prediction methods from the HSM were applied to conduct benefit-cost analysis and to establish a prioritized list of projects based on expected cost-effectiveness. The result is a list of Short- and Medium-term projects, with the most cost-effective treatments included in the Short-term project group.

This analysis is intended to identify and prioritize alternative safety projects through a planning-level analysis. Therefore, this analysis reflects planning-level cost estimates that are used to inform a relative comparison of benefit-cost between alternatives. The findings of this analysis will identify relative priorities for implementation; the prioritized projects should be scoped and more detailed cost estimates should be prepared to revise the B / C ratios prior to making final funding decisions.

BENEFIT

The benefit of the countermeasures is quantified in terms of the annual cost savings to society associated with a reduction in crashes after implementation. The benefit is calculated by estimating the number of crashes reduced by a proposed countermeasure (or group of countermeasures) and associating a societal cost to those reduced crashes. The methods applied to estimate and quantify the benefits of countermeasures at intersections and segments along the study corridor are described below.

Crash Prediction

Crash prediction tools and methods from the HSM were applied to estimate the expected crash frequency within the study corridor, with and without countermeasures. The fundamental purpose for using the HSM crash prediction method is to compensate for the randomness in crash occurrence. Crashes include a human component not directly related to geometry or presence of certain roadway features. Any given set of crash data for a period of time will reflect randomness in crash frequency not related to changes to the roadway. The HSM method for predicting the expected average annual crash frequency applies the Empirical Bayes (EB) method to remove statistical bias.

Method

Crash frequency and severity is predicted using safety performance functions (SPFs). SPFs are regression equations estimating the frequency and severity of crashes based on multiple factors, including intersection geometry, lane configuration, and traffic volume. SPFs are based on national research and are intended to reflect a range of driver and roadway characteristics. The SPFs were calibrated to reflect variations between conditions in Oregon and other states studied to develop the

SPFs. Variations could include driver characteristics, roadway design, terrain, and other factors associated with geometry, human factors, and driving environment. Calibration factors were obtained from Calibrating the Highway Safety Manual Predictive Methods for Oregon Highways, Final Report SPR 684 OTREC-RR-12-02.

Predicting crashes for a No-Build scenario (existing and future) estimates the expected number of crashes assuming only traffic volume varies between years. The expected number of crashes serves as a baseline crash estimate for comparison with the project alternatives.

SPFs for rural multilane undivided highways were obtained from Chapter 11 of the HSM and applied to determine existing crash prediction estimates for roadway segments and intersections. The rural multilane undivided highways model was the most appropriate because the divided highway model does not account for a flush median that exists on US 97. For the purpose of this study, it was assumed the traffic volumes will not change with implementation of safety improvements.

Predicted average crash frequency was computed using ODOT-calibrated spreadsheet tools designed to implement the HSM crash prediction methodology. The tools implement the EB procedure to establish an "expected" average crash frequency based on observed crash history and "predicted" average crash frequency. The application of the EB procedure produces the most reliable long-term expected average number of crashes.

Intersections were analyzed using the methodology from Chapter 11 of the HSM, with the exception of Deschutes Junction. Because this intersection functions as an interchange, it was evaluated using ISATe software, which applies the methodology developed in NCHRP 17-45, Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges.

No-Build Crash Prediction Results

The expected number of crashes is summarized in Table 10 by intersection and segment.

Table 10 No-Build Annual Crash History and Prediction Estimates

Location	Observed Annual Number of Crashes	Predicted Number of Crashes per Year	Expected Number of Crashes per Year
Redmond City Limits to Quarry Ln	3.2	6.5	5.2
Quarry Ln / US 97	0.2	0.6	0.5
Quarry Ln to 61st Street	5.0	9.2	7.4
61st Street / US 97	1.2	0.7	0.8
61st Street to Deschutes Jct.	1.4	6.1	4.1
Deschutes Jct. / US 97	1.4	0.7	0.8
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0
Ft Thompson Ln / US 97	0.6	1.0	0.8
Ft Thompson Ln to Bend City Limits	2.8	2.1	3.4
Total	$\mathbf{2 1 . 6}$	$\mathbf{3 4 . 7}$	$\mathbf{3 0 . 0}$

As shown in Table 10, if no changes are made to the existing roadway and volumes remain similar to those recorded in 2014, approximately 30.0 crashes are expected per year. This indicates approximately 8.3 crashes more crashes are expected per year for similar facilities in Oregon than were observed over the study period. Detailed spreadsheets documenting the existing crash prediction analyses are provided in Appendix C.

Build Crash Prediction Results

The No-Build expected crash frequency was used as the baseline for comparison of multiple projects. The expected number of crashes over the 20 -year analysis period was multiplied by the project CMF (i.e., the expected change in crashes associated with each project).

The purpose of this report is to provide a relative comparison in crash reduction between various alternatives; therefore, 2014 volumes are consistently applied to predict crashes for all build alternatives.

CMFs are multiplicative, indicating that when more than one countermeasure is applied at a location, the combined project CMF is the product of the individual countermeasure CMFs. The combined project CMF was applied to the expected No-Build number of crashes to predict the number of crashes estimated to occur if the project is implemented. This method assumes traffic volumes are equal to those in the No-Build scenario and that no significant changes, other than the proposed countermeasures, are made to US 97 that would substantially impact the number of crashes.

Some CMFs only apply to specific crash types. For example, the CMF for installing intersection lighting applies only to non-daylight crashes. These CMFs were only applied to the ratio of observed crashes of the designated type relative to the total crashes observed on the corridor.

Where countermeasures do not have quantifiable estimates of effectiveness, no quantitative reductions were applied. Therefore, the benefit-cost ratios may be considered conservative estimates.

Cost of Crashes

The benefit of each alternative was calculated by applying a cost to the crashes reduced. The cost per crash reduced was developed based on the crash severity breakdown of the corridor and the economic value per crash by severity from ODOT's Benefit/Cost spreadsheet tool. Based on that tool, the following economic values were assumed for each crash severity:

- Fatal Crash: \$1,170,000
- Injury A Crash: \$1,170,000
- Injury B Crash: \$70,600
- Injury C Crash: \$70,600
- Property Damage Only Crash: $\$ 19,400$

The weighted average cost based on the crash severity distribution of the five year crash history for the study corridor resulted in an average cost of $\$ 164,785$ per crash reduced. After the CMFs are applied to estimate the number of crashes reduced per year, the 20 -year present value cost of crashes is calculated using a uniform series present worth factor of 12.46, as instructed by the ODOT Highway Safety Projects Benefit/Cost Analysis Worksheet. The safety "benefit" of the countermeasures is calculated as the difference in present value crash costs between No-Build and Build scenarios.

COST OF IMPROVEMENTS

Planning-level cost estimates were calculated for the potential countermeasures identified in Table 9. Cost estimates were based on costs listed in the ODOT CMF list and unit costs developed from the ODOT bid items when possible. A contingency of 40 percent was applied to each estimate. The cost estimates do not include any assumptions or cost for right-of-way impacts. The cost estimates will be revised through ODOT's project scoping process. A summary table of the potential countermeasures and planning-level cost estimates is provided in Appendix D.

The proposed countermeasures have varying design life. For example, most roadway construction projects will have a 20 -year design life. However, a shorter design life was assumed for treatments such as pavement markings (10 years), raised pavement markers (5 years), and signage (10 years). Countermeasures with a shorter design life were assumed to be replaced as-needed over the 20-year
analysis period. The following assumptions were used for the service life of the countermeasures (all others assume a 20-year lifespan):

- Speed feedback signs (10 years);
- Inlaid raised pavement markers (5 years);
- Signing and striping improvements, including median on minor street approach (10 years); and
- Restriping merge area (5 years).

PROJECT PRIORITIZATION

Projects were grouped into three categories such that the projects with the relatively highest effectiveness (i.e., greatest crash reduction per dollar spent) are included in the higher priority categories. The project categories are described as follows:

- Short-term projects are the most cost-effective and do not require additional right-of-way or public outreach.
- Medium-term projects are generally higher cost than short-term projects and tend to involve a greater degree of construction activity.
- Median projects are presented as a separate category because these projects involve the construction of a median along the highway and a U-Turn treatment to accommodate access to driveways and intersections. These projects involve higher costs and are more likely to impact right-of-way than short- or medium-term projects. These projects may require additional steps prior to implementation.

Some countermeasures may be included in both short- and medium-term categories, depending on its effectiveness at specific locations. Benefit-cost ratios were provided for each group of projects.

Short-Term Projects

Short-term projects are highly effective safety countermeasures implemented within the next five years at a relatively low cost. These include speed feedback signs, inlaid raised pavement markers, improving sight distance, intersection lighting, and enhanced signing and striping, including a median, on the minor street approach. Table 11 summarizes the benefit-cost analysis for the short-term projects. Figure 15 illustrates the proposed locations of the short-term, low-cost projects along the corridor.

Table 11 Short-Term Projects Benefit-Cost Summary

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequency	Short-Term Project Countermeasures	Project CMF	20-Year Crash Reduction	Preliminary 20-Yr Cost Estimate**	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio*
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	19.1	\$ 32,000	\$ 157,100	61.2
Quarry Ln	0.2	0.6	0.5	- Increase Sight Distance; - Median on minor street approach; - Intersection lighting	82\%	1.8	\$ 28,000	\$ 14,500	6.5
Quarry Ln to 61st Street	5	9.2	7.4	- Inlaid Raised Pavement Markers	93\%	11.0	\$ 14,000	\$90,500	80.6
61st Street	1.2	0.7	0.8	- Intersection lighting; - Median on minor street approach	50\%	7.8	\$ 27,000	\$64,500	29.8
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Inlaid Raised Pavement Markers	93\%	6.0	\$9,000	\$ 49,600	68.7
Deschutes Jct.	1.4	0.7	0.8	- Restripe Merge	99\%	0.0	\$ 14,000	\$ 500	0.1
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Inlaid Raised Pavement Markers;	93\%	10.3	\$ 14,000	\$85,200	75.8
Ft Thompson Ln	0.6	0.9	0.8	- None	N/A	0.0	\$	\$	--
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	12.6	\$ 27,000	\$ 103,800	47.9
Total Short-Term Projects	21.6	36.4	30.1			68.6	\$ 165,000	\$ 565,000	42.7

As shown in Table 11 and Figure 15, the short-term projects may be implemented for approximately $\$ 165,000$ and have a cumulative benefit-cost ratio of 42.7 .

Medium-term Projects

Medium-term projects are generally higher cost and tend to involve a greater degree of construction activity than short-term projects. Segment lighting, clear zone improvements projects, acceleration lanes, and deceleration lanes were classified as medium-term projects for this corridor. Table $\mathbf{1 2}$ summarizes benefit-cost analysis for the medium-term projects. Figure 16 illustrates the proposed locations of the medium-term projects along the corridor.

Table 12 Medium-Term Projects Benefit-Cost Summary

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequency	Medium-term Project Countermeasures	Project CMF	$\begin{gathered} \text { 20-Year } \\ \text { Crash } \\ \text { Reduction } \end{gathered}$	$\begin{gathered} \text { Preliminary 20- } \\ \text { Yr } \\ \text { Cost Estimate** } \end{gathered}$	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio*
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- None	N/A	N/A	N/A	N/A	N/A
Quarry Ln	0.2	0.6	0.5	- Deceleration Lane	93\%	0.7	\$ 188,000	\$ 5,700	0.4
Quarry Ln to 61st Street	5	9.2	7.4	- Segment Lighting; - Increase clear zone (Reduce RHR)	85\%	22.1	\$ 1,413,000	\$ 182,200	1.6
61st Street	1.2	0.7	0.8	- Acceleration Lane; - Deceleration Lane	83\%	2.7	\$ 376,000	\$ 22,400	0.7
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Increase clear zone (Reduce RHR)	94\%	4.9	\$ 58,000	\$ 40,000	8.6
Deschutes Jct.	1.4	0.7	0.8	- None	N/A	N/A	N/A	\$	N/A
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Increase clear zone (Reduce RHR)	94\%	8.4	\$ 58,000	\$69,000	14.8
Ft Thompson Ln	0.6	0.9	0.8	- Intersection lighting; - Median on minor street approach	51\%	8.2	\$27,000	\$ 67,800	31.3
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Segment Lighting	96\%	2.5	\$ 466,000	\$ 20,700	0.6
Total Medium-Term	21.6	36.4	30.1			49.5	\$ 2,586,000	\$407,700	2.0

${ }^{*} B / C$ Ratios reflect a uniform series present worth factor of 12.46 for a 20 -year life span. B / C Ratio $=($ (Annual Benefits X Present Worth Factor)/(Estimated Project Cost)
**Cost estimates exclude any right-of-way impacts or costs.

Median Projects and Alternatives
In order to address the median cross-over crashes, a raised median was evaluated. Fifty percent of all fatal and severe injury crashes in the study corridor were median cross-over or turning movement crashes. The median installation would restrict access at driveways and intersections to right-in, rightout for the length of the median. Therefore, this project includes U-turn treatments at median openings.

While there are many effective forms of U-turn treatments for rural high-speed roadways, a J-turn treatment was assumed for the purpose of this analysis, and cost estimates reflect a J-turn treatment. However, future analysis could evaluate different U-turn treatments to identify a preferred treatment. J-turns have been shown to be effective at reducing crashes by consolidating turning movements at multiple locations at one location and enhancing the crossing location to raise awareness of the conflict point. A Missouri study found J-turns in conjunction with median turn restrictions resulted in a decrease of 34.8 percent in all crashes and 53.7 percent in fatal and injury crashes. ${ }^{2}$ For the purpose of this analysis, the cost estimates for each J-turn assumes the location will be illuminated to increase visibility during dark lighting conditions. Appendix E illustrates a conceptual design of a J-turn concept along US 97.

There were no sections of the study corridor where a substantial length of median could be installed without impacting driveways at a reasonable cost. Therefore, phased implementation is recommended to prioritize implementation along segments of the study corridor where median installation provides the greatest reduction in crash frequency while minimizing impacts to existing accesses. Figure 18 illustrates the location of each median phase and the U-turns associated with each Phase. The figure also illustrates the location of driveways along the corridor and the locations of target crash types (head-on, sideswipe meeting, and turning movement crashes between 2009 and 2013).

As shown in Figure 18, phased implementation of median could begin near Deschutes Junction where there is the lowest driveway density. In general, driveway density is lower in the mid-section of the study corridor and increases towards the City limits. Further study is needed to design each U-turn treatment, which will need to account for distance to driveways, ability to accommodate acceleration lanes, and available right-of-way.

The following sections describe the four phases proposed for the median alternative. The analysis presented in this section provides the benefit/cost analysis using cost estimates for the concrete barrier median type. The concrete barrier is expected to have a higher cost than a cable barrier and is presented here to provide a conservative analysis. Appendix F provides a comparison in benefit/cost analyses for the two median types. ODOT will conduct additional analysis of median types before selecting a preferred barrier type.

[^1]
Phase I Median Alternative

The Phase 1 median alternative includes approximately 1.86 miles of median extending from approximately MP 130.18 to Deschutes Junction. One J-turn near the southern end of the segment (near MP 130.18), or alternate U-turn treatment, is recommended to serve southbound traffic. Deschutes Junction will serve as the U-turn opportunity for northbound traffic.

The benefit-cost analysis for Phase 1 is summarized in Table 13. Phase 1 has the highest benefit-cost ratio of all four phases.

Table 13 Median Phase 1 Benefit-Cost Summary

Countermeasures	Project Cost (\$)*	Project Benefit (\$)	B/C Ratio
Median and J-Turn	$\$ 1,500,000$	$\$ 4,300,000$	2.9

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
*Cost estimates exclude any right-of-way impacts or costs.

Phase 2 Median Alternative

Phase 2 of the median alternative includes approximately 1.60 miles of median extending from Deschutes Junction north to the intersection at $61^{\text {st }}$ Street. One J-turn, or alternate U-turn treatment, will serve northbound traffic on the northern end of the segment. The J-turn at this location should be further evaluated to determine if an alternative treatment could be installed off of the highway on $61^{\text {st }}$ Street in place of a J-turn. An aerial image of the intersection of US 97/61 Street is shown in Figure 17. The existing northbound left-turn from US 97 onto $61^{\text {st }}$ Street should be maintained to accommodate the left-turning traffic at this location.

The benefit-cost analysis for Phase 2 is summarized in Table 14.

Figure 17 Aerial Image of US 97/61 ${ }^{\text {st }}$ Street
Table 14 Median Phase 2 Benefit-Cost Summary

Countermeasures	Project Cost (\$)*	Project Benefit (\$)	B/C Ratio
Median and J-Turn	$\$ 1,600,000$	$\$ 3,000,000$	1.9

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
*Cost estimates exclude any right-of-way impacts or costs.

Phase 3 Median Alternative

Phase 3 of the median alternative includes approximately 4.18 miles of median extending from $61^{\text {st }}$ Street north to the Redmond City Limits. One U-turn opportunity should be provided for northbound traffic, and one should be provided for southbound traffic. The design of Phase 3 should further evaluate the placement of the U-turns. The northbound U-turn may need to be located south of the end of the median in order to fit the U-turn between driveways. If needed, the interchange at Yew Avenue can provide an alternate U-turn opportunity for residents and businesses located north of the last U-turn treatment.

The benefit-cost analysis for Phase 3 is summarized in Table 15.

Table 15 Phase 3 Benefit-Cost Summary

Countermeasures	Project Cost (\$)*	Project Benefit (\$)	B/C Ratio
Median and J-Turns	$\$ 3,700,000$	$\$ 8,400,000$	2.3

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
*Cost estimates exclude any right-of-way impacts or costs.

Phase 4 Median Alternative

Phase 4 of the median alternative includes approximately 1.35 miles of median extending from the Bend City Limits to approximately MP 132.04. One U-turn opportunity should be provided for northbound traffic, and one should be provided for southbound traffic. The design of the Phase 4 project should further evaluate the placement of the U-turns.

The benefit-cost analysis for Phase 4 is summarized in Table 16. The cost estimates include two J-turns, although future analysis may be needed to finalize the appropriate treatment.

Table 16 Phase 4 Median Benefit-Cost Summary

Countermeasures	Project Cost (\$)*	Project Benefit (\$)	B/C Ratio
Median and U-turns	$\$ 2,200,000$	$\$ 3,000,000$	1.4

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
*Cost estimates exclude any right-of-way impacts or costs.

Median Suggestions

Based on the four phases of median presented in this section, Phase 1 has the highest benefit-cost ratio and the smallest number of driveways impacted by the median. Phase 2 also has a small number of driveways impacted. Therefore, Phases 1 and 2 could be implemented together to minimize construction costs and the number of attenuators needed if a concrete barrier is installed. KAI recommends that this project be monitored by ODOT to determine the success of the project at reducing crashes, the reception of the project by the community, and the usage of the U-turn treatments by the public. Implementation of J-turns or other U-turn treatments should be accompanied with an educational campaign and signage to promote driver understanding and improve driver expectation.

Section 6 Findings and Conclusions

FINDINGS AND CONCLUSIONS

Kittelson \& Associates, Inc. (KAI) analyzed crash history and evaluated potential crash countermeasures on a 9-mile section of US 97 from the south Redmond city limits (milepost 124.40) to the north Bend city limits (milepost 133.39). This study identified near- and medium-term countermeasures that would cost less than a series of frontage roads that have been identified by ODOT as long-term alternatives. KAI applied quantitative safety evaluation methods to evaluate a range of countermeasures to improve safety along the corridor. The findings and recommendations of the study are summarized below.

FINDINGS

Roadway Characteristics

US 97 is a four-lane rural highway with a posted speed limit of 55 miles per hour (mph). The two travel lanes in each direction are separated by a 10 -foot paved median. The study area is shown in Figure 1. The typical cross-section consists of two travel lanes in each direction (12 feet in width), shoulders of 8 to 10 feet in width, and a paved center median of 10 feet in width. The roadway is fairly straight with only a few large horizontal curves in the study area. Driveway density is highest within 0.50 -mile of the City of Bend and City of Redmond limits, in the transition sections from rural to urban areas. One gradeseparated crossing is provided at Deschutes Junction; all other public and private accesses are at-grade.

Historical Crash Analysis

Over the five-year study period (2009-2013), 108 crashes were reported on the US 97 study corridor from milepost (MP) 124.40 to 133.39 . A summary of the most-relevant crash trends is provided below.

- Crash types varied throughout the corridor. The three most common crash types were rear-end (25 crashes), fixed object (16 crashes), and sideswipe-meeting (15 crashes).
- 12 reported crashes were fatal or severe injury (injury A) crashes. 37 crashes resulted in a moderate or minor injury (injury B or C), and 59 crashes resulted in property damage only.
- Of the 12 fatal or injury A crashes,
- Fifty percent were head-on crashes, sideswipe meeting crashes, or turning movement crashes - crash types that could be corrected by a median.
- Fifty percent occurred during dark, dawn, or dusk light conditions.
- The most commonly-reported crash cause was "speed too fast for conditions."
- Almost 42 percent of all reported crashes involved snow, ice, or wet roadways.

Field Observations

Field observations were conducted in December 2014 during daylight and dark light conditions. A team consisting of ODOT, Deschutes County, Oregon State Police, and consultants participated in the field visit. Observations from this field visit are summarized below.

- Traffic volumes were higher during the peak hours, making it difficult to find gaps in both directions of traffic to complete a left-turn from the minor street approach to US 97.
- Vehicles were observed using the 10 -foot striped median to complete two-stage left turns from minor-street approaches onto US 97.
- During night-time conditions, it was difficult to see approaching intersections.
- The team discussed that right-turn deceleration lanes and right-turn acceleration lanes would be beneficial at key intersections due to the high traffic volumes and speeds.
- One bicyclist was observed riding along US 97.
- Rock outcroppings were located along the corridor, approximately 30 feet from the edge of the roadway shoulder.
- Driveways are located throughout the corridor, with higher density within 0.50 -mile of the City of Bend and City of Redmond limits.

CONCLUSIONS

KAI prioritized projects aimed at reducing fatal and Injury A crashes as Short-term, Medium-term, or Median projects. Median projects were phased separately from other countermeasures due to the impacts to public and private accesses along the corridor. If a median is carried forward for implementation, ODOT will develop an outreach plan and document key access management principles, as defined in OAR 734-051-7010 and 734-051-1065.

The median projects include U-turn treatments to maintain access to driveways along the corridor that would otherwise be restricted by a median. While a preliminary J-turn concept has been discussed and preliminary design concept is included in this report, there are several other viable designs that provide for safe u-turning maneuvers. More information on design of unsignalized J-turn intersections on state highways is provided in NCHRP Report 745: Left-Turn Accommodations at Unsignalized Intersections. Additional information on the safety and operational effect of U-turns at unsignalized median openings is provided in NCHRP Report 524: Safety of U-Turns at Unsignalized Median Openings.

Each group of projects and their estimated benefit-cost ratios are summarized in Table 17, Table 18, and Table 19. While the magnitude of these B / C ratios may change upon refining the cost estimates, the priority for implementation is not expected to change.

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequency	Short-Term Project Countermeasures	Project CMF	20-Year Crash Reduction	Preliminary $20-\mathrm{Yr}$ Cost Estimate**	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio*
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	19.1	\$ 32,000	\$ 157,100	61.2
Quarry Ln	0.2	0.6	0.5	- Increase sight distance; - Median on minor street approach; - Intersection lighting	82\%	1.8	\$ 28,000	\$ 14,500	6.5
Quarry Ln to 61st Street	5	9.2	7.4	- Inlaid Raised Pavement Markers	93\%	11.0	\$ 14,000	\$90,500	80.6
61st Street	1.2	0.7	0.8	- Intersection lighting; - Median on minor street approach	50\%	7.8	\$ 27,000	\$ 64,500	29.8
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Inlaid Raised Pavement Markers	93\%	6.0	\$ 9,000	\$ 49,600	68.7
Deschutes Jct.	1.4	0.7	0.8	- Restripe merge	99\%	0.0	\$ 14,000	\$500	0.1
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Inlaid Raised Pavement Markers;	93\%	10.3	\$ 14,000	\$85,200	75.8
Ft Thompson Ln	0.6	0.9	0.8	- None	N/A	0.0	\$ -	\$ -	--
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Install speed feedback signs in transition zones; - Inlaid Raised Pavement Markers	82\%	12.6	\$ 27,000	\$ 103,800	47.9
Total	21.6	36.4	30.1			68.6	\$ 165,000	\$ 565,000	42.7

${ }^{*} B / C$ Ratios reflect a uniform series present worth factor of 12.46 for a 20-year life span. B / C Ratio $=$ (Annual Benefits X Present Worth Factor)/(Estimated Project Cost)
Note: All costs presented are Present Value Costs ($\$$) over the 20 -year analysis period.
**Cost estimates exclude any right-of-way impacts or costs.

Table 18 Medium-Term Projects

Location	Annual Observed Crash Frequency	Annual Predicted Crash Frequency	Annual Expected Crash Frequency	Medium-Term Project Countermeasures	Project CMF	$\begin{aligned} & \text { 20-Year } \\ & \text { Crash } \\ & \text { Reduction } \end{aligned}$	Preliminary 20- Yr Cost Estimate**	Expected Annual Comprehensive Crash Cost Reduction (Benefit)	Benefit / Cost Ratio
Redmond City Limits to Quarry Ln	3.2	6.5	5.1	- None	N/A	N/A	N/A	N/A	N/A
Quarry Ln	0.2	0.6	0.5	- Deceleration Lane	93\%	0.7	\$ 188,000	\$ 5,700	0.4
Quarry Ln to 61st Street	5	9.2	7.4	- Segment Lighting; - Increase clear zone (Reduce RHR)	85\%	22.1	\$ 1,413,000	\$ 182,200	1.6
61st Street	1.2	0.7	0.8	- Acceleration Lane; - Deceleration Lane	83\%	2.7	\$ 376,000	\$ 22,400	0.7
61st Street to Deschutes Jct.	1.4	6.1	4.1	- Increase clear zone (Reduce RHR)	94\%	4.9	\$ 58,000	\$ 40,000	8.6
Deschutes Jct.	1.4	0.7	0.8	- None	N/A	N/A	N/A	\$	N/A
Deschutes Jct. to Ft Thompson Ln	5.8	7.8	7.0	- Increase clear zone (Reduce RHR)	94\%	8.4	\$ 58,000	\$ 69,000	14.8
Ft Thompson Ln	0.6	0.9	0.8	- Intersection lighting; - Median on minor street approach	51\%	8.2	\$27,000	\$67,800	31.3
Ft Thompson Ln to Bend City Limits	2.8	3.9	3.4	- Segment Lighting	96\%	2.5	\$ 466,000	\$ 20,700	0.6
Total	21.6	36.4	30.1			49.5	\$ 2,586,000	\$ 407,700	2.0

${ }^{*} B /$ C Ratios reflect a uniform series present worth factor of 12.46 for a 20 -year life span. B / C Ratio (Annual Benefits X Present Worth Factor)/(Estimated Project Cost)
Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
**Cost estimates exclude any right-of-way impacts or costs.

Table 19 Median Alternatives and Phasing

Phase	Start and End MP	Number of U- Turns Included	Project Cost (\$)**	Project Benefit (\$)	B/C Ratio
Phase 1	$130.181-132.04$ (MP 132.04 to Deschutes Junction)	One	\$1.5 million	\$4.23 million	2.9
Phase 2	$128.578-130.181$ (Deschutes Junction to 61 St Street)	One	$\$ 1.6$ million	$\$ 3.00$ million	1.9
Phase 3	$124.40-128.578\left(61^{\text {st }}\right.$ Street to Redmond City Limits)	Two	$\$ 3.7$ million	$\$ 8.36$ million	2.3
Phase 4	$132.04-133.39$ (Phase 1 Median to Bend City Limits)	Two	$\$ 2.2$ million	$\$ 2.97$ million	1.4

Note: All costs presented are Present Value Costs (\$) over the 20-year analysis period.
** Cost estimates assume a concrete barrier median type and J-turn treatment for a conservative analysis. Cost estimates exclude any right-of-way impacts or costs. More details about the cost differences among median types are provided in Appendix F

Based on the results of the analysis, summarized in Section 5 of this report, KAI makes the following suggestions:

- Consider implementation of Short-term projects first. They are the most cost-effective and generally do not require additional right-of-way or impact to adjacent properties.
- Consider implementing the Median projects in phases. Phases 1 and 2 could be implemented with two U-turn treatments, when funding becomes available. Phases 1 and 2 address highcrash locations while also minimizing the number of access points impacted by the median. Precede implementation of median and U-turn treatments with a public education campaign, and provide signage to educate drivers how to safely use the U-turn treatment.
- Medium-term projects are cost-effective, but require greater investment than short-term projects. They have potential to impact right-of-way, which would delay implementation.
- Pending successful implementation of Median Phases 1 and 2, Phases 3 and 4 could be implemented, when funding becomes available.

Appendix A Historical Crash Analysis

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to ot 33.39 , Both Add and Non-Add mileage, 010112009 to 12 2312013

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION
TRANSPORTATION DATA SECTION - CRASH ANALYSII AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.410 133.39, Both Add and Non-Add mileage, 010112009 to $12 / 311201$

\begin{tabular}{|c|}
\hline \& \& \& \& CONN \#
FIRST STREET
SECOND STREET \& \& \& \& \& \& 免 \& \& \[
\begin{aligned}
\& \text { move } \\
\& \text { fove }
\end{aligned}
\] \& \& \& 崂 \& \& \& Error \& \& Crash \& IVEHCLIEE Event \& PPARTICPANT \& Crash \& \({ }_{\text {JVEHCLE }}\) cause \& PPARTICPANT \\
\hline \multirow[t]{4}{*}{\(\underbrace{\text { der }}_{\substack{1847 \\ \text { STATE }}}\)} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{Deschutes} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\[
\begin{gathered}
\text { Srfachr } \\
\text { ON } \\
\text { O4 }
\end{gathered}
\]} \& \multirow[t]{4}{*}{\begin{tabular}{l}
(NONE) \\
(4)
\end{tabular}} \& \multirow[t]{4}{*}{UnkNown} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& N \\
\& N
\end{aligned}
\]} \& \multirow[t]{4}{*}{} \& 1 \& \[
\begin{aligned}
\& \text { NONE } \\
\& \substack{\text { PNVEE } \\
\text { SEM Tow }}
\end{aligned}
\] \& \& \({ }^{\text {d }}\) DVvF \& Nove \({ }^{\circ}\) \& \({ }^{30}\) \& \& \& 000-N. ETror \& 022-Struck Obj Prior Coll 000-No Action) \& 013 Foreces 8 y I maat \& \& \& 01.-Too Fast For Cond \& 00.No coote \& 00.N. Code \\
\hline \& \& \& \& \& \& \& \& \& \& 2 \& \begin{tabular}{l}
NoNe \\
pravte PSNGR CAR
\end{tabular} \& \& 1 dove \& nsc \& 25 \& \& \& \& (oonvo ation \& \& \& \& \& 00.No Code \& 1.Too Fast \\
\hline \& \& \& \& \& \& \& \& \& \& 3 \& \[
\begin{aligned}
\& \text { NoNE } \\
\& \substack{\text { PavVE } \\
\text { PASNGG CAR }}
\end{aligned}
\] \& \& 1 Drve \& \& \({ }^{40}\) \& OR.Y \& \& 000-No Enor \& (ond \& \& \& \& \& 00.N. Code \& 00.No coode \\
\hline \& \& \& \& \& \& \& \& \& \& 4 \& \begin{tabular}{l}
none \\
Pavte \\
PSNGA CAR
\end{tabular} \& \& 1 drve \& nsc \& \({ }^{45}\) \& \(F \underset{\substack{\text { OR.Y } \\ \text { ORe } 25}}{ }\) \& \& Ooo.a E Eror \& 022-Struck Obj Prior Coll
(000-No Action) (000-No Action) \& \& \& \& \& 00.No code \& 00.N. Code \\
\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{Deschues} \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { STFGHT } \\
\text { OI } \\
\hline 01
\end{gathered}
\]} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(NONE) \\
(4)
\end{tabular}} \& \multirow[t]{2}{*}{Unknown} \& \multirow[t]{2}{*}{\(\stackrel{\vee}{N}\)} \& \multirow[t]{2}{*}{} \& \& \[
\begin{aligned}
\& \text { NONE } \\
\& \substack{\text { PRVTE } \\
\text { PSNGG CAR }}
\end{aligned}
\] \& \[
\begin{gathered}
\text { sfrgatr } \\
\mathrm{N-S}
\end{gathered}
\] \& 1 Dave \& Nove 5 \& 54 \& \& \& Oity \& \& \& 124.Sile blc of surfee \& \& \& 00.N. Code \& 01-Too Fast For Cond
05-Drove Wrong Side \\
\hline \& \& \& \& \& \& \& \& \& \& 2 \& \begin{tabular}{l}
NONE \\
\({ }^{\text {Parave }}\) \\
PSNGR CAR
\end{tabular} \& \[
\substack{\text { strgatr } \\ \text { s. un }}
\] \& 1 drve \& NoNe 2 \& 29 \& \(\cdots \underset{\substack{\text { of.Y } \\ \text { ORe } 25}}{ }\) \& \& Ooo.a E Eror \& \& \& \& \& \& Oo.No Core \& 00.N. Code \\
\hline \[
\begin{gathered}
01958 \\
\text { countr } \\
\text { col }
\end{gathered}
\] \& \[
\begin{array}{lll}
\mathrm{N} N \mathrm{~N} N \mathrm{~N} \& \begin{array}{l}
10 / 02 / 2013 \\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array} \mathrm{BA}
\end{array}
\] \& \& \[
\begin{aligned}
\& \text { 1-Undiv Hwy or +Mile of Div Hwy } \\
\& \text { 02-Rur Pr Art - Oth } \\
\& \text { 0-Mainline } \\
\& \text { 0-Reg Mile } \\
\& \text { 126.00 }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \text { STFGHT } \\
\& \text { OI } \\
\& \hline 01
\end{aligned}
\] \& \begin{tabular}{l}
(NONE) \\
(4)
\end{tabular} \& UnkNown \& \(\stackrel{\text { N }}{\text { N }}\) \& \& 1 \& \[
\begin{aligned}
\& \text { NONE } \\
\& \substack{\text { PavTE } \\
\text { PSNGG CAR CAR }}
\end{aligned}
\] \& \({ }_{\text {singhr }}^{\text {s.s }}\) \& 1 dove \& Nove 5 \& 50 \& OR-Y \& \& O81-Ran Oft foad \& \& \({ }^{\text {06t-Malbox }}\) \& \({ }^{\text {061-Malbox }}\) \& \& 16.Divers seepy \& Oo.-Vo code \& 16-Diveraseepy \\
\hline 01684
COUNTY \& YNNNNN \& Desstures \& \& \& \[
\begin{gathered}
\text { srfgent } \\
\text { Sin } \\
\hline 101
\end{gathered}
\] \& \begin{tabular}{l}
(NONE) \\
(4)
\end{tabular} \& \({ }_{\text {UnkNown }}\) \& \(\stackrel{\text { N }}{\text { N }}\) \& \[
\begin{aligned}
\& \text { RAN Overtun } \\
\& \text { WEV NOV NOL } \\
\& \text { DAN }
\end{aligned}
\] \& 1 \& \[
\begin{aligned}
\& \text { NONE } \\
\& \substack{\text { Pavve } \\
\text { PNSNGG CAR }}
\end{aligned}
\] \& \({ }_{\text {singht }}^{\text {S.S }}\) \& 1 Drve \& nuc \& \({ }^{45}\) \& OR-Y \& \& O81-Ran Off foad \& \& \& \& \& \({ }^{01}\)-To Foras for cond \& Oo.No Code \& \({ }^{\text {01-Too Fass For Cond }}\) \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { O1435 } \\
\text { Nove }
\end{gathered}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{cc}
\mathrm{N} N \mathrm{~N} N \mathrm{~N} \& \begin{array}{l}
11 / 11 / 2010 \\
\\
\\
\\
\\
\\
\text { Thursday } \\
5 \mathrm{P}
\end{array}
\end{array}
\]} \& \multirow[t]{4}{*}{Deschutes} \& \multirow[t]{4}{*}{} \& \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\begin{tabular}{l}
(NONE) \\
(4)
\end{tabular}} \& \multirow[t]{4}{*}{Nonknown} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{1

2} \& \multirow[t]{3}{*}{noon pravte psngr Car} \& \multirow[t]{3}{*}{} \& 1 drve \& NoNe ${ }^{\text {a }}$ \& ${ }^{36}$ \& ${ }_{\text {F }}^{\substack{\text { cher } \\ \text { ORR25 }}}$ \& \& 026-Faild Avoid S Sop Ven
O00.No Error \& \& \& \& \& \multirow[t]{4}{*}{O7-FIlowed to Closely} \& \multirow[t]{3}{*}{Oonco cose} \& 07.F.alowed too cososy
00.No Codese

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& (000.No Action) \& \& \& \& \& \& 00.-Wocode

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& 3 PsNa \& noss \& \& F \& \& Ooo-No Eror \& (000.No Action) \& \& \& \& \& \& 00.No Coid

\hline \& \& \& \& \& \& \& \& \& \& \& | none |
| :--- |
| Pavte |
| PSNGR CAR | \& $\substack{\text { stop } \\ \text { s-N }}_{\text {cos }}$ \& 1 drve \& nove \& 41 \& $F \underset{\substack{\text { of. } \\ \text { ORe } 25}}{ }$ \& \& Ooo.a E Eror \& 011-Stop In Traf-No Lturn (000-No Action) \& \& \& \& \& Oo.No Core \& 00.N. Code

\hline \multirow[t]{2}{*}{$\underbrace{1}_{\substack{01521 \\ \text { State }}}$} \& \multirow[t]{2}{*}{YN N N N Nolitiz2013} \& \multirow[t]{2}{*}{Deschutes} \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| (NONE) |
| :--- |
| (4) |} \& \multirow[t]{2}{*}{Nonkown} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \& \[

$$
\begin{aligned}
& \text { NONE } \\
& \substack{\text { PavTE } \\
\text { PNSNGG CAR }}
\end{aligned}
$$

\] \& \& 1 Drve \& NoNE 2 \& 21 \& ${ }^{M}$| of.ry |
| :---: |
| ORe25 | \& \& | 051-Reckless Driving |
| :--- |
| 081-Ran Off Road 031-Passing Wrong Side | \& \& ${ }^{\text {O92.Phanamon vencice }}$ \& 092Pranaom venicle \& \& \[

$$
\begin{aligned}
& \text { 33-Reckless Driving } \\
& \text { 31-Speed Racing } \\
& \text { 06-Improper Overtaking }
\end{aligned}
$$
\] \& 00.No Coid \& 33-Reckless Driving 31-Speed Racing

06-Improper Overtaking

\hline \& \& \& \& \& \& \& \& \& \& 2 \& $$
\begin{aligned}
& \text { NoNE } \\
& \text { Nonve } \\
& \text { PRSNGE CAR }
\end{aligned}
$$ \& \& 1 PRKD \& nvo \& 42 \& M \& \& 000.-N Eror \& \& \& \& \& \& 00.No Code \& 00.No Code

\hline \multirow[t]{2}{*}{$\underbrace{\text { der }}_{\substack{\text { ouro } \\ \text { STATE }}}$} \& \multirow[t]{2}{*}{NYN N N Notitroio} \& \multirow[t]{2}{*}{Deschutes} \& \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{| (NONE) |
| :--- |
| (4) |} \& \multirow[t]{2}{*}{Unknown} \& \multirow[t]{2}{*}{\[

\underset{N}{N}

\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{1} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \text { NoNE } \\
& \begin{array}{c}
\text { Popvie } \\
\text { PSNGO CAR CAR }
\end{array}
\end{aligned}
$$
\]} \& \multirow[t]{2}{*}{} \& Dava \& nve \& ${ }^{26}$ \& F ${ }_{\substack{\text { on- } \\ \text { ORer }}}$ \& \& 051-Reckless Driving 080-Fail To Maintain

081-Ran Off Road \& \& 088.eneeobuluing \& 088.ereneesuling \& \& \& 00.No code \&

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& 2 PsNa \& nvo \& 19 \& F \& \& ${ }^{\text {000.No Eroor }}$ \& (000.No Action) \& \& \& \& \& \& ${ }^{\text {00.No Coie }}$

\hline
\end{tabular}

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION
TRANSPORTATION DATA SECTION - CRASH ANALYSII AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39, Both Add and Non-Add mileage, 0101/2009 to 12131201

- \quad CRASH DE-CODER V4.1.3 PRC REPORT PRINTABLE EQUIVALENT TMM

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION

TRANSPORTATION DATA SECTION-CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39, Both Add and Non-Add mileage, 010112009 to $12 / 311201$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIIO

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39 , Both Add and Non-Add mileage, 011012009 to $12 / 311201$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION- CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4to 133.39, Both Add and Non-Add mileage, 010112009 to 12 2131201

		$\begin{array}{\|l} \hline \text { county } \\ \text { CITY } \\ \text { URB AREA } \\ \hline \end{array}$	RD \# FUNCTIONAL CLASS COMPONENT MILEAGE TYPE MILEPOINT				(Threl				告		$\begin{aligned} & \text { move } \\ & \text { Horom } \end{aligned}$				${ }_{\text {Lex }}^{\text {Lens }}$		error		crash	VEHCLLE EVENT	Prarticimant	Crash	${ }_{\text {IVEHCLE }}$ Cause	PPAFITIPANT
00882COUNTY	N N N N Notorzoil	Descowues	1-Undiv Hwy or + Mile of Div Hwy 02-Rur Pr Art - Oth 02-Rur O-Mainine 0 -Reg Mile 0 -Reg Mile		$\substack { \text { STRGHT } \\ \begin{subarray}{c}{\text { SNu }{ \text { STRGHT } \\ \begin{subarray} { c } { \text { SNu } } } \\ {\hline 3} \end{subarray}$	(NONE) (4)	${ }_{\text {None }}$	$\stackrel{N}{N}$			1	$\begin{gathered} \substack{\begin{subarray}{c}{\text { OPNVE } \\ \text { PRTVE } \\ \text { PSNGR CAR }} }} \end{gathered}$	$\underset{\sim}{\text { STFGHT }}$	d Deve	NONE ${ }^{\text {39 }}$	F	(on-Y		${ }^{26}$-Falid Avoid Stop ven					07-FIolowed too closely	00.No Code	07-Folowed too closely
											2	noNE ${ }^{\circ}$ PRUTE pSNGER CAR		1 drve	NONE 66	m			Ooo.a E ETror	011-Stop In Traf-No Lturn (000-No Action) (000-No Action)		${ }^{013}$ Foroced By M mpact			00-No Code	00.No Code
											3			1 drve	NoNE 31	F			ooo.as Enor						0-No	${ }^{\text {00.No coite }}$
00609	$\begin{array}{ccc} \mathrm{N} N \mathrm{~N} N \mathrm{~N} & \begin{array}{l} 05 / 18 / 2013 \\ \\ \\ \text { Saturday } \\ 10 \mathrm{~A} \end{array} \end{array}$	Desstues	$\begin{aligned} & \text { 1-Undiv Hwy or +Mile of Div Hwy } \\ & \text { 02-Rur Pr Art - Oth } \\ & \text { 0-Mainline } \\ & \text { 0-Reg Mile } \\ & \text { 128.48 } \end{aligned}$		$\begin{gathered} \text { Sifart } \\ \text { UN } \\ \hline \text { sit } \end{gathered}$	(NONE) (4)	UnkNown	N		$\begin{gathered} \text { O.turun } \\ \text { NuNN } \\ \text { NuN } \end{gathered}$	'	$\begin{aligned} & \substack{\text { NoNE } \\ \text { SPPYEE } \\ \text { PSSNG RAR }} \end{aligned}$	$\substack{\begin{subarray}{c}{\text { UuNN-L } \\ s=w} }} \end{subarray}$	1 Drve	NONE 79	M	${ }_{\substack{\text { ORPY } \\ \text { OR2 }}}$							${ }^{32}$-Caresess Diving	${ }^{\text {00.No Code }}$	${ }^{32}$ 2-Caresss Drining
											2	$\begin{gathered} \substack{\text { NoNE } \\ \text { SPRYE } \\ \text { PSSNG CAR RA }} \end{gathered}$	${ }_{\text {STRGHT }}^{\text {N.S }}$	1 Drve	NWB ${ }^{33}$	m	OR-Y		Ooo.No Eror						00.No Code	00.No coode
$\begin{gathered} \text { ooss } \\ \text { STATE } \end{gathered}$		Desstues				(NONE) (4)	UnkNown	$\stackrel{\text { N }}{N}$	$\begin{aligned} & \text { suow } \\ & \text { SNO } \\ & \text { Ond } \end{aligned}$	$\begin{gathered} \substack{\begin{subarray}{c}{\text { Fxoos } \\ \text { fix } \\ \text { IN }} }} \\ {\hline} \end{gathered}$	1	$\begin{aligned} & \text { NoNE } \\ & \substack{\text { OPVYTE } \\ \text { PSNCR RAR }} \end{aligned}$	$\underbrace{\substack{\text { s-N }}}_{\text {singert }}$	1 DRva	NW8 43	F	${ }_{\substack{\text { ORPY } \\ \text { OR2 }}}$		081-Ran Off foad					${ }^{01.700}$ Fas forc Cond	00-No Code	${ }^{\text {0. }}$ Too F Fast forc Cond
$\begin{gathered} 00905 \\ \text { STAATE } \end{gathered}$	N N N N Notirizaio	Desstures			$\substack{\begin{subarray}{c}{\text { STRGHT } \\ \text { OO }} }} \\ {\hline} \end{subarray}$	(NONE) (4)	Unknown	N ${ }_{N}^{N}$	$\begin{gathered} \text { cir } \\ \text { dork } \\ \text { DAak } \end{gathered}$	$\begin{aligned} & \text { AnMALL } \\ & \text { PNOH } \\ & \text { Pol } \end{aligned}$	1	Nove ${ }^{\text {Pravie }}$ pSNGB CAR		1 Dava	NONE 46	F			000-N E ETror		${ }^{\text {O35.Deer O OEFK }}$	${ }^{\text {O35-Deer Of Ek }}$			00-No Code	
00485 COUNT	$\begin{array}{ccc} \hline Y N N N N & \\ & \text { 04/04/2012 } \\ & \text { Wednesday } \\ & \text { UNK } \end{array}$	Desstues			$\begin{aligned} & \text { STRGH } \\ & \hline 07 \end{aligned}$	(NONE) (4)	UnkNown	N		$\begin{gathered} \text { overturn } \\ \text { NNo } \\ \text { No } \end{gathered}$	1	$\begin{aligned} & \text { NONE } \\ & \begin{array}{l} \text { PMVEE } \\ \text { PSNOR CAR } \end{array} \end{aligned}$		Dever	nuc 42	m	${ }_{\substack{\text { OR.Y } \\ \text { OR2e }}}$				${ }^{124} 4$ Slie b blo of surace			${ }^{01 .- \text { Too Fas forc oond }}$	${ }^{\text {00-No Code }}$	${ }^{\text {01-Too Fast Forc Cond }}$
$\begin{aligned} & \text { ongo } \\ & \text { Noopo } \end{aligned}$		Desctulus	1-Undiv Hwy or + Mile of Div Hwy 0 -Mainline 0-Reg Mile			(NONE) (4)	NonkNown	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { OLR } \\ & \text { DRay } \\ & \text { Day } \end{aligned}$		1	$\begin{gathered} \text { NONE } \\ \substack{\text { PMVTE } \\ \text { PSSNGR CAR }} \end{gathered}$		DRVA	NoNE 0	"	UWK		${ }^{\text {O42-Faisiowestiowven }}$					${ }^{\text {0. }}$ Too Fas Forc Cond	00.No Code	${ }^{\text {0. }}$ Too F Fast For Cond
											2	$\begin{aligned} & \substack{\text { NONE } \\ \text { PRPVEE } \\ \text { PSSNG CAR }} \end{aligned}$	$\underset{\substack{\text { sfrght } \\ \text { s-N }}}{\text { cher }}$	1 drve	NoNe з\%	F			Ooo.-N E Eror						00-No Code	00.No code
$\underset{\substack{\text { Ooose } \\ \text { Nove }}}{ }$	$\overline{N N N N N N}$	Desstures	1-Undiv Hwy or + Mile of Div Hwy 0-Mainline 0-Reg Mile		$\begin{gathered} \text { STRGHT } \\ \text { Siv } \\ \hline \text { sit } \end{gathered}$	(NONE) (2)	Nnknown	$\begin{gathered} N \\ N \end{gathered}$	$\begin{aligned} & \text { OLR } \\ & \text { DRay } \\ & \text { Day } \end{aligned}$	$\substack{\text { o.s.s.ght } \\ \text { Is.M }}$	'	$\begin{aligned} & \text { NoNE } \\ & \substack{\text { PavTE } \\ \text { PSSNGR CAR }} \end{aligned}$	${ }_{\text {STrght }}^{\text {N-S }}$	D Deve	NoNE 55	"	On-		O80.Fal 0 O Mainainalane					${ }^{05.0 . r o v e ~ W o r o g ~ S i d e ~}$	00.No Code	
											2	$\begin{gathered} \substack{\text { NoNE } \\ \text { SPRYE } \\ \text { PSSNG CAR }} \end{gathered}$		d Dave	nuc 25	F	On-		Ooo.-N Etror						00.No code	00.No code
														2 PsNG	nvo	F			000-N. Erior	(000.No Action)						OONo ${ }^{\text {a }}$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION

TRANSPORTATION DATA SECTION- CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39 , Both Add and Non-Add mileage, 010112009 to 12231201

		$\begin{gathered} \text { colvir } \\ \text { curriv } \\ \text { CuBB AREA } \end{gathered}$		$\begin{aligned} & \text { CONN \# } \\ & \text { FIRST STREET } \\ & \text { SECOND STREET } \\ & \hline \end{aligned}$							装		$\begin{gathered} \text { move } \\ \text { fove } \end{gathered}$						Error		CRASH	IVEHCLELE ${ }^{\text {Event }}$	PPATITIPANT	Crash	IVEHCLEE Cause	Pabiticant
$\begin{gathered} \text { ooryitr } \\ \text { counrr } \end{gathered}$	$\begin{gathered} \text { N N N N N } \\ \\ \qquad \begin{array}{l} \text { Sunday } \\ \\ 5 \mathrm{P} \end{array} \end{gathered}$	Desstues	$\begin{aligned} & \text { 1-Undiv Hwy or +Mile of Div Hwy } \\ & \text { 02-Rur Pr Art - Oth } \\ & \text { 0-Mainline } \\ & \text { 0-Reg Mile } \\ & \text { 128.58 } \end{aligned}$		$\begin{gathered} \text { NTER } \\ \text { Nos } \\ \hline 0 \end{gathered}$	$\begin{aligned} & \text { cross } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	${ }_{\text {stop sign }}$	${ }_{N}^{N}$	$\begin{aligned} & \text { CRa } \\ & \text { ORA } \\ & \text { DAY } \end{aligned}$	$\begin{gathered} \text { ANGLOTH } \\ \text { ANPN } \\ \text { NN } \end{gathered}$	1	nove Pente PSNGR CAR	$\underset{\sim}{\text { wunanel }}$	1 Dave	NoNE 75	M			${ }^{021-\text {-isg }}$ S Sop Sign	000-No Action (000-No Action)				${ }^{03} \cdot$ Passed S Sop Sign $^{\text {a }}$	Oo.No Code	${ }^{03}$ Passeds S Sop Sign
															Insc 73	m			Ooo-No Eror	(000-NoAction)						00.No code
														3 Psng	nuc 59	м			000-No Erior	(000.No Action)						00.No Code
											2	$\begin{aligned} & \text { NONE } \\ & \text { PRPVE } \\ & \text { PSNGR CAR } \end{aligned}$	$\underset{\substack{\text { strohtr } \\ \mathrm{NTS}}}{ }$	1 drve	NONE 24		$F \underset{\substack{\text { OR.V } \\ \text { ORe2 }}}{ }$		000-No Erior						00.N. code	00.No Code
	N N N N Nosorzoos	Deschues	1-Undiv Hwy or +Mile of Div Hwy 02-Rur Pr Art - Oth 0-Mainline 0-Reg Mile			(NONE) (4)	Unknown	N N	$\begin{aligned} & \text { Cid } \\ & \text { Dar } \\ & \text { Day } \end{aligned}$	$\begin{gathered} \text { ortob } \\ \text { orto } \\ \text { Pot } \end{gathered}$		NONE PRUTE PSNGR CAR	$\underset{\substack{\text { strgart } \\ \mathrm{NS}}}{ }$	1 Dava	NONE 72		$\underset{\substack{\text { OTH.Y } \\ \text { NRES }}}{\text { ond }}$		000-No Erar	000-No Action (000-No Action)	${ }^{\text {O25 Wheel Came off }}$	${ }^{\text {O25.Wheel Cane Off }}$		25.7 -Tef Failue	${ }_{25 \text {-Tre F alue }}$	00.N. Code
											2	$\begin{aligned} & \text { NoNe } \\ & \text { NoNE } \\ & \text { PRNTEE EABE } \end{aligned}$		1 Drve	NONE 39				000-N. EEror						00.No Code	00.No Code
$\begin{gathered} 01186 \\ \text { state } \end{gathered}$		Desanues	$\begin{aligned} & \text { 1-Undiv Hwy or +Mile of Div Hwy } \\ & \text { 02-Rur Pr Art - Oth } \\ & \text { 0-Mainline } \\ & \text { 0-Reg Mile } \\ & \text { 129.00 } \end{aligned}$			(NONE) (4)	Unknown	${ }_{N}^{N}$	$\begin{aligned} & \text { CiR } \\ & \text { Dar } \\ & \text { Aar } \end{aligned}$	$\begin{aligned} & \text { AnMALL } \\ & \text { PHO } \\ & \text { Pol } \end{aligned}$	1	NONE 0 ${ }^{\circ}$ PRUTE PSNGR CAR		1 Drve	NONE 26				000-N. Error		${ }^{\text {O35.Deer } O \text { OEK }}$	${ }^{\text {O35.oee Or Ek }}$			00.No code	
$\underset{\substack{\text { O1067 } \\ \text { State }}}{ }$		Deschutes	1-Undiv Hwy or +Mile of Div Hwy 02-Rur Pr Art - Oth 0-Mainline 0 -Reg Mile		$\substack{\text { Sirght } \\ \text { OO }}$	(NONE) (4)	${ }_{\text {NONE }}$	$\stackrel{N}{N}$	$\begin{aligned} & \text { ORA } \\ & \text { DRar } \\ & \text { Dar } \end{aligned}$	$\begin{gathered} \text { OUTURN } \\ \text { OHNN } \\ \text { WNON } \end{gathered}$		NoNE Pavte psNar caf	$\underset{\substack{\text { U-TunN } \\ N+N}}{ }$	DRva			O-		oosillegal -Tum	000-No Action (000-No Action)				08-mpoper Tum	00.N. Code	08.mpooer Tum
											2	NoNE PRUTE PSNGR CAB	$\underset{\substack{\text { strgat } \\ \text { S-N }}}{\text { den }}$	1 drve	INB 23				000-N. EEror						00.N. Code	00.No code
$\begin{gathered} \text { oiazo } \\ \text { counry } \end{gathered}$	$\begin{array}{ccc} \mathrm{N} N \mathrm{~N} N & \begin{array}{l} 03 / 29 / 2010 \\ \\ \\ \\ \\ \\ \\ 10 \mathrm{~A} \text { (} \mathrm{A} \end{array} \end{array}$				$\begin{gathered} \text { STRGHT } \\ \text { UN } \\ 01 \end{gathered}$	(NONE) (4)	UnkNown	N		$\begin{gathered} \text { ovebturn } \\ \text { pooo } \\ \text { Poo } \end{gathered}$	1	NONE pavte pSNGR CAR	$\underset{\substack{\text { stractr }}}{\text { N- }}$	1 Drve	NONE 27									${ }^{\text {01.-Too Fas forc oond }}$	00.No Code	${ }^{\text {0.-Too Fast for Cond }}$
$\begin{aligned} & \text { oatao } \\ & \text { countr } \end{aligned}$	$\begin{aligned} Y \\ Y \end{aligned}$	Desstures			$\begin{aligned} & \text { STRGHT } \\ & \text { STM } \\ & 01 \end{aligned}$	$\begin{aligned} & \text { (NONE) } \\ & \text { (4) } \end{aligned}$	Unknown	$\stackrel{\vee}{N}$			1	NONE PRVTE PSNGR C		1 Drve	NoNe 48				000-N0 Erior					${ }^{\text {01.Too Fass for Cond }}$	Oo.No Code	${ }^{\text {0.1.Too Fass for Cond }}$
	$\overline{Y N N N N}$	Desstures	1-Undiv Hwy or +Mile of Div Hwy 2-Rur Pr Art - Oth 0-Mainline 0-Reg Mile		$\begin{gathered} \text { Sifght } \\ \text { ON } \\ \hline \text { St } \end{gathered}$	(NONE) (4)	Unknown	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$			1	NONE pavte PSNGR CAR		1 Deva	NONE 28				O80-Fal To Manalainlane			${ }^{124 . S i l i d e b l c o f ~ t u r a c e ~}$			${ }^{\text {00.N. Code }}$	
											2	$\begin{aligned} & \text { NoNE } \\ & \substack{\text { Pavien } \\ \text { SEM Tow }} \end{aligned}$		dovir	nove 0		UNK UNK		000-No Eror						00.N. Code	00-No coiol
$\begin{gathered} 0047 \\ \text { STAAE } \end{gathered}$	$\begin{array}{cll} \text { N N N N N } & & 03 / 30 / 2011 \\ & \text { Wednesday } \\ & 8 \mathrm{P} \end{array}$	Desstuwes	$\begin{aligned} & \text { 1-Undiv Hwy or +Mile of Div Hwy } \\ & \text { 02-Rur Pr Art - Oth } \\ & \text { 0-Mainline } \\ & \text { 0-Reg Mile } \end{aligned}$		$\substack{\text { STRGHT } \\ \text { Cut } \\ \hline 3}$	(NONE) (4)	Unknown	N_{N}^{N}			1	NONE PRuve PSNGEREAE	$\underset{\substack{\text { strgat } \\ \text { s-N }}}{\text { c- }}$	1 Drve	NONE 26		${ }^{\text {M }}$ ¢		O92FFaisownorsiowen					27-1ateraion	${ }^{\text {00.No coote }}$	27-1ataterion
											2	NoNE PRyTE SNGGR CaR		1 dove	nne ${ }^{\text {s }}$		F ${ }_{\substack{\text { OR-Y } \\ \text { ORe }}}$		Doono Eror						00.N. Code	${ }^{\text {00-No coite }}$

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.41 to 133.39 , Both Add and Non-Add mileage, 0101/2009 to 12131201

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION

TRANSPORTATION DATA SECTION- CRASH ANALYIIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39, Both Add and Non-Add mileage, 010112009 to $12 / 312013$

OREGON DEPARTMENT OF TRANSPORTATION－TRANSPORTATION DEVELOPMENT DIVIIION

TRANSPORTATION DATA SECTION－CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES，MP 124.41 to 133．39，Both Add and Non－Add mileage，010112009 to 12131201

		$\begin{aligned} & \text { countr } \\ & \text { cura } \\ & \text { CuIBA A } \end{aligned}$			$\begin{aligned} & \text { pochar } \\ & \text { pochar } \\ & \text { Boctiv } \end{aligned}$		｜ita	$\begin{array}{\|l\|l} \hline \text { OFF RD } \\ \text { RNDBT } \\ \text { L } & \text { DRVWY } \\ \hline \end{array}$			年		$\begin{gathered} \text { move } \\ \begin{array}{c} \text { foom } \end{array} \end{gathered}$	準岩			${ }_{\text {\％}}^{\text {\％}}$		ERror	$$	Crash	IVehlicese Event	Pranticipant	Crash	${ }_{\text {JVEHCLE }}$ cause	PPARTICPANT
$\begin{gathered} \text { O} \\ \text { No Rept } \\ \text { Not } \end{gathered}$		Descorues	1－Undiv Hwy or＋Mile of Div Hwy 2－Mur Pr A 0 －Mainline 0 －Reg Mile		$\substack{\text { STREATT } \\ \text { Co } \\ \hline 0}$	（NONE） （2）	Unknown	N N		$\begin{gathered} \text { s.1.15Top } \\ \text { Batar } \\ \text { PaOR } \end{gathered}$	1	NONE perute psNar CaR	$\begin{gathered} \substack{\text { sтRGGt } \\ \mathrm{N}-\mathrm{s}} \end{gathered}$	1 drve	NONE 55	F	OR．Y OR O5		${ }^{026}$ Falald Avoid Stop ven					07－Folowed too closely	00．N．Code	O7－Folowed too Cosesy
											2	nove ${ }^{\circ}$ PRUVIE PSNGR CAR		1 drve	NoNE 0	F			000－No Eror						00．No code	00．N．Code
$\begin{gathered} \text { ootato } \\ \text { STATE } \end{gathered}$	$\begin{array}{cc} \text { N N N N N } & \text { 03/30/2011 } \\ & \text { Wednesday } \\ & 8 \mathrm{P} \end{array}$	Deschutes				（NONE ） （2）	Unknown	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$	$\begin{gathered} \text { cir } \\ \text { onk } \\ \text { ousk } \end{gathered}$	$\begin{gathered} \text { s.1.15Top } \\ \text { fatar } \\ \text { PaOP } \end{gathered}$	1	$\begin{aligned} & \text { NoNE } \\ & \begin{array}{l} \text { OPRVTE } \\ \text { PSSNG CAR } \end{array} \end{aligned}$	$\substack{\text { strgegrt } \\ s-\mathrm{N}}$	1 DRve	NONE 52				${ }^{206-F a l a l d ~ A v o i d ~ S t o p ~ v e n ~}$					07．Folowed too cososy	Oo．－No code	${ }^{07}$－Folowed too Cosesy
											2	$\begin{aligned} & \text { NoNE } \\ & \substack{\text { Pepve } \\ \text { PSNGGR CAR }} \end{aligned}$		1 drve	NoNE 59	M			000－N．EEror						00．No coode	00．No code
00607		Desscrues	1－Undiv Hwy or＋Mile of Div Hwy 02 －Rur Pr A 0 －Mainline 0 －Mainline 0 －Reg Mile		$\begin{gathered} \text { STRGHT } \\ \substack{\text { CTN }} \\ \hline 0 \end{gathered}$	（NONE ） （4）	${ }_{\text {Unknown }}$	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { ORF } \\ & \text { DAR } \\ & \text { DAF } \end{aligned}$	S-STRGHT $\begin{aligned} & \text { REAR } \\ & \text { PDO } \end{aligned}$	1	NoNE PRavte psNar CaR	$\substack{\text { sTrgatr } \\ s-\mathrm{N}}$	1 Dava	NoNE 53		${ }_{\substack{\text { of．r } \\ \text { ORe } 25}}$		O92－Faisiownorsiowven	000－No Action （000－No Action）				07．Folowed too cososy	Oo．－No Code	${ }^{\text {07－Folowed too Cosesy }}$
											2	nove pravte PSNGR CAR		1 Drve	NONE 22	м			000－N0 Enror						00．No code	00．No code
$\begin{aligned} & 01221 \\ & \text { No Po } \end{aligned}$	$\begin{array}{cc} \text { N N N N N } & 09 / 28 / 2009 \\ & \text { Monday } \\ 7 P \end{array}$	Deschues			$\substack { \text { STRGHT } \\ \begin{subarray}{c}{\text { SNo }{ \text { STRGHT } \\ \begin{subarray} { c } { \text { SNo } } } \\ {\hline 6} \end{subarray}$	(NONE) （4）	${ }_{\text {Unknown }}$	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$	$\begin{gathered} \text { cir } \\ \text { cipk } \\ \text { ousk } \end{gathered}$	$\begin{gathered} \text { ANMALL } \\ \text { PNOH } \\ \text { Pal } \end{gathered}$	1	nove Pavie psNar CaR		1 Drve	NONE 75	F			Ooo－No Enor		${ }^{\text {O35．Deeror } \mathrm{OEF}}$	${ }_{\text {O35．oee or Ek }}$			Oo．vo coote	
$\underset{\substack{\text { oupas } \\ \text { NoNE }}}{ }$	N N N N N Nosornaor	Descrulus	1－Undiv Hwy or＋Mile of Div Hwy 02－Rur Pr Art－Oth 0－Mainline 0－Reg Mile 0 －Reg Mile			（NONE） （4）	${ }_{\text {UnkNown }}$	$\stackrel{N}{N}$	$\begin{gathered} \text { cir } \\ \text { DRF } \\ \text { DARKK } \end{gathered}$		1	none PRYTE sSNGR CAR		dove	nowe 0				045－mpopere Lane Cimg					06．1mpoper OVerakikg	00．No code	${ }^{06}$ impopeeforeraxing
											2	nove pravte Psngr Car		1 drve	NONE 28	M			000－No Eror						00．No code	00．No code
	YNNNN NNonozolz	Deschulus			$\begin{aligned} & \text { STRGHT } \\ & \substack{\text { SiN } \\ 05} \end{aligned}$	（NONE ） （4）	${ }_{\text {UnkNown }}$	$\stackrel{N}{N}$			1	NoNe ${ }^{\text {pryte }}$ PSNGR CAR		D DVve	nvo 44	F					010．Subsea O Verturn	010．Susseq OVertum			00．No code	
														2 PSNG	INB ${ }^{34}$	F			ooo－No Eror	（000－No Action）						00．No Code
											2	$\begin{aligned} & \text { NoNE } \\ & \substack{\text { Pontre } \\ \text { PSNGR CAR }} \end{aligned}$		1 Drve	NJA 19	м	$\underbrace{}_{\substack{\text { OnPr } \\ \text { OR25 }}}$			（os．Sived down					Oo．No Coote	
$\underset{\substack{\text { or294 } \\ \text { counry }}}{ }$	N N N N Nozaz2012	Desstures	1－Undiv Hwy or＋Mile of Div Hwy 02－Rur Pr Art－Oth 0－Mainline 0－Reg Mile			（NONE ） （4）	Nuknown	$\begin{aligned} & \hline N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { siow } \\ & \text { doat } \\ & \text { do } \end{aligned}$		1	NONE ${ }^{\circ}$ PRYTE PSNGR CAR		1 Drve	nve ${ }^{\text {s }}$	M			O80－Falito Manaininlane			${ }^{124-S i d e b ~ b l o ~ o f ~ s u r a c e ~}$			00．No coode	
											1	none pante PSNGR CAR		1 Psng	Inve 50	F			000－N．Ernor			${ }^{124 . S i l i d e b l ~ o f ~ s u r f a e ~}$			Oo．No Code	${ }^{\text {Oo．No cosede }}$
											2	none PRyTE PSNGR CAR		1 dove	NoNE 55	M	${ }_{\substack{\text { ORPr } \\ \text { OR2 } 25}}$		000．－N E Eror						00．N．Code	00．No code
														2 PsNG	Nove 44	F			000－N0 Erior	（000．No Action）						${ }^{0}$ O．No Cata

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVISION

TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39 , Both Add and Non-Add mileage, 010112009 to 12 231201

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION
TRANSPORTATION DATA SECTION- CRASH ANALYSIS AND REPORTING UNIT
Highway O04 ALL ROAD TYPES, MP 124.4t to 133.39, Both Add and Non-Add mileage, 010012009 to 123112013
.

OREGON DEPARTMENT OF TRANSPORTATION - TRANSPORTATION DEVELOPMENT DIVIIION
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.41 to 133.39 , Both Add and Non-Add mileage, 0101/2009 1012121201
-

oregon department of transportation - transportation development division
TRANSPORTATION DATA SECTION - CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES, MP 124.4 to 133.39, Both Add and Non-Add mileage, 0101/2009 to 12 231201

OREGON DEPARTMENT OF TRANSPORTATION－TRANSPORTATION DEVELOPMENT DIVISION
TRANSPORTATION DATA SECTION－CRASH ANALYSIS AND REPORTING UNIT
Highway 004 ALL ROAD TYPES，MP P 124.4 to 1 133．39，Both Add and Non－Add mileage，010012009 to 123112013

		$\begin{aligned} & \text { COUNTY } \\ & \text { CITY } \\ & \text { URB AREA } \end{aligned}$	RD \＃ FUNCTIONAL CLASS COMPONENT MILEPOINT			$\begin{aligned} & \text { INT-TYP } \\ & \text { (MEDIAN) } \\ & \text { LEGS } \\ & \text { (\# LANES) } \end{aligned}$			$\begin{array}{l\|l} \mathrm{D} & \text { WTHR } \\ \text { T } & \text { SURF } \\ \text { v } & \text { IGHT } \end{array}$	$\begin{aligned} & \text { CRASH } \\ & \text { COLL } \\ & \text { SVRTY } \end{aligned}$	免		$\begin{aligned} & \text { MOVE } \\ & \text { FROM } \\ & \text { TO } \end{aligned}$	管	容			$\underbrace{\substack{\text { m }}}_{\text {x }}$		евRor	$$	Ccash	TVEHCLIEE EVNT	1 PARATICPANT	Crash	VEHCLIE CAUSE	PPAATICPANT
（0026	N N N N Non onvoratz	$\begin{aligned} & \text { Deschulus } \\ & \text { BENO UA } \end{aligned}$			$\underset{\substack{\text { STRGHT } \\ \text { UN } \\ \text { So }}}{\substack{\text { stact }}}$	（NONE ） （4）	Unkenown	${ }_{N}^{N}$	$\begin{aligned} & \text { cir } \\ & \text { dork } \\ & \text { DARAR } \end{aligned}$		1	noov ${ }^{\circ}$ pavite psMGF CAR		1	prve	NoNE	so			00：No		0^{06}－Sisiderocts On	08 －S．Steferocks		${ }^{12}$ 2．Oner（rot Pivere	00．No Code	12．Oner（ （0at Divere Em）

Appendix B Countermeasure Crash Modification Factors (CMFs)

Reference ID	Project ID	Site	Future No Build Expected Crashes (Total Crashes/Year)	Alternative	Countermeasures	Proportion of CMF Target Crash Type	Low	High	CMF Average
S1	1.01	Redmond City Limits to Quarry Ln	5.15	1	Install speed feedback signs in transition zones	100\%	20\%	88\%	88\%
S1	1.02	Redmond City Limits to Quarry Ln	5.15	1	Inlaid Raised Pavement Markers	49\%	94\%	105\%	93\%
S1	1.03	Redmond City Limits to Quarry Ln	5.15	M3	Median	100\%	n/a	n/a	70\%
11	2.01	Quarry Ln	0.49	1	Increase Sight Distance	100\%	28\%	104\%	52\%
11	2.02	Quarry Ln	0.49	1	Intersection lighting	53\%	88\%	99\%	80\%
11	2.03	Quarry Ln	0.49	4	Deceleration Lane	100\%	81\%	105\%	93\%
11	2.04	Quarry Ln	1.26	M3	Restrict left turns, provide J-Turn for NB \& SB	100\%	n/a	n/a	65\%
11	2.05	Quarry Ln	0.49	1	Median on minor street approach	100\%	64\%	100\%	75\%
S2	3.00	Quarry Ln to 61st Street	7.41	1	Inlaid Raised Pavement Markers	49\%	94\%	105\%	93\%
S2	3.01	Quarry Ln to 61st Street	7.41	M3	Median - Jersey Barrier	100\%	n/a	n/a	70\%
S2	3.03	Quarry Ln to 61st Street	7.41	4	Segment Lighting	13\%	95\%	98\%	91\%
S2	3.04	Quarry Ln to 61st Street	7.41	4	Increase clear zone (Reduce RHR from 2 to 1)	100\%	n/a	n/a	94\%
12	4.00	61st Street	0.79	4	Accel Lane(s)	100\%	79\%	99\%	89\%
12	4.01	61st Street	0.79	4	Decel Lane(s)	100\%	81\%	105\%	93\%
12	4.02	61st Street	0.79	1	Intersection lighting	53\%	88\%	99\%	67\%
12	4.03	61st Street	0.79	1	Median on minor street approach	100\%	64\%	100\%	75\%
12	4.04	61st Street	0.41	M2	Restrict left turns, provide J-Turn for NB	100\%	n/a	n/a	65\%
S3	5.00	61st Street to Deschutes Jct.	4.06	1	Inlaid Raised Pavement Markers	49\%	94\%	105\%	93\%
S3	5.01	61st Street to Deschutes Jct.	4.06	M2	Median - Jersey Barrier	100\%	n/a	n/a	70\%
S3	5.03	61st Street to Deschutes Jct.	4.06	4	Increase clear zone (Reduce RHR from 2 to 1)	100\%	n/a	n/a	94\%
13	6.02	Deschutes Jct.	0.84	1	Restripe Merge	100\%	100\%	100\%	100\%
S4	7.00	Deschutes Jct. to Ft Thompson Ln	6.97	1	Inlaid Raised Pavement Markers	49\%	94\%	105\%	93\%
S4-ph2	7.04	Deschutes Jct. to Ft Thompson Ln - PHASE 2 (MP 130.23-131.495)	2.13	M1	Median - Jersey Barrier	100\%	n/a	n / a	70\%
S4-ph2	4.04	Deschutes Jct. to Ft Thompson Ln - PHASE 2 (MP 130.23-131.495)	0.61	M1	Restrict left turns, provide J-Turn for NB	100\%	n/a	n/a	65\%
S4-ph3	7.06	Deschutes Jct. to Ft Thompson Ln - PHASE 3 (MP 132.29-132.04)	0.70	M4	Median - Jersey Barrier	100\%	n/a	n/a	70\%
S4-ph1	7.01	Deschutes Jct. to Ft Thompson Ln - PHASE 1 (MP 131.495-132.04)	3.92	M1	Median - Jersey Barrier	100\%	n/a	n/a	70\%
S4	7.03	Deschutes Jct. to Ft Thompson Ln	6.97	4	Increase clear zone (Reduce RHR from 2 to 1)	100\%	n/a	n/a	94\%
14	8.00	Ft Thompson Ln	0.83	4	Intersection lighting	53\%	88\%	99\%	67\%
14	8.01	Ft Thompson Ln	0.83	4	Median on minor street approach	100\%	64\%	100\%	75\%
14	8.02	Ft Thompson Ln	0.41	M4	Restrict left turns, provide J-Turn for SB \& NB	100\%	n/a	n/a	65\%
S5	9.00	Ft Thompson Ln to Bend City Limits	3.40	1	Install speed feedback signs in transition zones	100\%	20\%	88\%	88\%
S5	9.01	Ft Thompson Ln to Bend City Limits	3.40	1	Inlaid Raised Pavement Markers	49\%	94\%	105\%	93\%
S5	9.02	Ft Thompson Ln to Bend City Limits	3.40	M4	Landscaped Median	100\%	n/a	n/a	70\%
55	9.03	Ft Thompson Ln to Bend City Limits	3.40	4	Segment Lighting	13\%	95\%	98\%	96\%

Appendix C

 No-Build Crash Prediction Analyses| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Site type | Predicted average crash frequency (crashes/year) | | | Observed crashes, $\mathrm{N}_{\text {observed }}$ (crashes/year) | Overdispersion Parameter, k | Weighted adjustment, w | Expected average crash frequency. | |
| | $\mathrm{N}_{\text {predicted }}$ (TOTAL) | $\mathrm{N}_{\text {predicted }}$ (FI) | $\mathrm{N}_{\text {predicted }}$ (PDO) | | | Equation A-5 from Part C Appendix | Equation A-4 from Part C Appendix | |
| ROADWAY SEGMENTS | | | | | | | | |
| Segment 1 | 6.501 | 3.585 | 2.916 | 3.2 | 0.107 | 0.590 | 5.147 | |
| Segment 2 | 9.232 | 5.091 | 4.141 | 5 | 0.082 | 0.569 | 7.407 | |
| Segment 3 | 6.074 | 3.349 | 2.724 | 1.4 | 0.125 | 0.569 | 4.058 | |
| Segment 4 (total) | 7.750 | 4.284 | 3.466 | 5.8 | 0.087 | 0.598 | 6.966 | |
| Segment 4, Phase 1 | 4.539 | 2.509 | 2.030 | 3 | 0.148 | 0.598 | 3.920 | |
| Segment 4, Phase 1 | 1.956 | 1.081 | 0.875 | 2.4 | 0.344 | 0.598 | 2.134 | Note: The breakdown of FI |
| Segment 4, Phase 3 | 0.897 | 0.496 | 0.401 | 0.4 | 0.749 | 0.598 | 0.697 | and PDO relies on the |
| Segment 5 | 3.881 | 2.125 | 1.756 | 2.8 | 0.208 | 0.553 | 3.398 | observed severity |
| Segment 6 | | | | | | 1.000 | 0.000 | distribution of crashes |
| Segment 7 | | | | | | 1.000 | 0.000 | throughout the study |
| Segment 8 | | | | | | 1.000 | 0.000 | corridor. |
| (INTERSECTIONS | | | | | | | | |
| Intersection 1 | 0.566 | 0.230 | 0.335 | 0.2 | 0.460 | 0.794 | 0.490 | |
| Intersection 2 | 0.663 | 0.281 | 0.382 | 1.2 | 0.460 | 0.766 | 0.789 | |
| Intersection 3 | 0.670 | 0.352 | 0.461 | 1.4 | 0.460 | 0.764 | 0.842 | Note: N predicted relies on ISATe analysis. |
| Intersection 4 | 0.935 | 0.432 | 0.503 | 0.6 | 0.494 | 0.684 | 0.829 | |
| Intersection 5 | | | | | | 1.000 | 0.000 | |
| Intersection 6 | | | | | | 1.000 | 0.000 | |
| Intersection 7 | | | | | | 1.000 | 0.000 | |
| Intersection 8 | | | | | | 1.000 | 0.000 | |
| COMBINED (sum of column) | 43.665 | 23.817 | 19.991 | 27.4 | -- | -- | 36.678 | |

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	CMF for Intersection Skew Angle (CMF ${ }_{1 i}$) from Equations 11-18 or 11-20 and 11-19 or 11-21	CMF for Left-Turn Lanes $\left(\right.$ CMF $\left._{2 i}\right)$ from Table 11-22	CMF for Right-Turn Lanes $\left(\mathrm{CMF}_{3 i}\right)$ from Table 11-23	$\begin{aligned} & \text { CMF for Lighting } \\ & \left(\text { CMF }_{4 i}\right) \\ & \text { from Equation 11-22 } \\ & \hline \end{aligned}$	Combined CMF (CMF сомв) $(2)^{*}(3)^{*}(4)^{*}(5)$
Total	1.08	1.00	1.00	1.00	1.08
Fatal and Injury (FI)	1.09	1.00	1.00	1.00	1.09

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition

Worksheet 2C -- Intersection Crashes for Rural Multilane Highway Intersections								
		(2)		(3)	(4)	(5)	(6)	Predicted average crash frequency, $\mathbf{N}_{\text {predicted int }}$ (3) ${ }^{\star}(5)^{\star}(6)$
	SPF Coefficients			$\mathbf{N}_{\text {spf int }}$	Overdispersion Parameter, \mathbf{k}	Combined CMFs from (6) of Worksheet 2 B	Calibration Factor, C_{i}	
	from Table 11-7 or 11-8							
Total	-12.526	1.204	0.236	3.483	0.460	1.08	0.15	0.566
Fatal and Injury (FI)	-12.664	1.107	0.272	1.408	0.569	1.09	0.15	0.230
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{1}\right)$	-11.989	1.013	0.228	0.805	0.566	1.09	0.15	0.132
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) Total - (7) ${ }_{\text {FI }}$

Collision Type	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	Proportion of Collision Type(total)	$\begin{aligned} & \hline \mathrm{N}_{\text {predicted int (TTTAL) }} \\ & \text { (crashes/year) } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Proportion of } \\ \text { Collision } \\ \text { Type(FI) } \\ \hline \end{array}$	$\mathrm{N}_{\text {prediciced it }}(\mathrm{Fr})$ (crashes/year)	$\begin{gathered} \text { Proportion of } \\ \text { Collision Type }\left(\mathrm{Fl}^{\mathrm{a}}\right) \end{gathered}$	N predicted int (Fl^{a}) (crashes/vear)	$\begin{aligned} & \text { Proportion of } \\ & \text { Collision Type } \end{aligned}$ (PDO)	$\mathbf{N}_{\text {prediciced int (PDo) }}$ (crashes/year)
	from Table 11-9	(7)rotal from Worksheet 2C	$\begin{gathered} \text { from Table } \\ \hline 11-9 \end{gathered}$	(7)Ff from Worksheet 2C	from Table 11-9	(7) $\mathrm{Fl}^{\text {a }}$ from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	0.999	0.566	1.000	0.230	1.001	0.132	1.001	0.335
		(2)** 3$)_{\text {Total }}$		(4) $\times(5)$ ¢I		(6) ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ PDo
Head-on collision	0.007	0.004	0.009	0.002	0.014	0.002	0.004	0.001
Sideswipe collision	0.010	0.006	0.009	0.002	0.010	0.001	0.013	0.004
Rear-end collision	0.245	0.139	0.264	0.061	0.167	0.022	0.217	0.073
Angle collision	0.045	0.025	0.070	0.016	0.076	0.010	0.017	0.006
Single-vehicle collision	0.119	0.067	0.117	0.027	0.129	0.017	0.121	0.041
Other collision	0.573	0.324	0.531	0.122	0.605	0.080	0.629	0.211

	Worksheet 2E -- Summary Results for Rural Multilane Highway Intersections
Crash severity level	Predicted average crash frequency (crashes / year)
Total	0
	0.6
Fatal and Injury (FI)	0.2
Fatal and Injury ${ }^{(}\left(\mathrm{F} \mathrm{F}^{\text {a }}\right.$)	0.1
Property Damage Only (PDO)	0.3

Worksheet 2B -- Crash Modification Factors for Rural Multilane Highway Intersections					
(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	CMF for Intersection Skew Angle (CMF ${ }_{1 i}$) from Equations 11-18 or 11-20 and 11-19 or 11-21	CMF for Left-Turn Lanes $\left(\mathrm{CMF}_{2 \mathrm{i}}\right)$ from Table 11-22	CMF for Right-Turn Lanes $\left(\mathrm{CMF}_{3 i}\right)$ from Table 11-23	$\begin{aligned} & \text { CMF for Lighting } \\ & \left(\text { CMF }_{4 i}\right) \\ & \text { from Equation 11-22 } \\ & \hline \end{aligned}$	Combined CMF (CMF сомв) $(2)^{*}(3)^{*}(4)^{*}(5)$
Total	1.03	1.00	1.00	1.00	1.03
Fatal and Injury (FI)	1.05	1.00	1.00	1.00	1.05

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4SG condition

(1)	(2)				$\frac{(4)}{\text { Overdispersion Parameter, } \mathbf{k}}$	(5)	(6)	(7) Predicted average crash frequency, $\mathbf{N}_{\text {predicted int }}$
Crash Severity Level	SPF Coefficients Table 11-7 or 11-8			$\mathbf{N}_{\text {spf int }}$		Combined CMFs from (6) of Worksheet 2B	Calibration Factor, C_{i}	
	a	b	cord (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8			(3)** 5$)^{*}(6)$
Total	-12.526	1.204	0.236	4.282	0.460	1.03	0.15	0.663
Fatal and Injury (FI)	-12.664	1.107	0.272	1.786	0.569	1.05	0.15	0.281
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}^{\text {a }}$)	-11.989	1.013	0.228	0.983	0.566	1.05	0.15	0.155
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) Total ${ }^{\text {(7) }}$ (${ }_{\text {FI }}$
								0.382

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	$\begin{array}{c\|} \hline \text { Proportion of } \\ \text { Collision } \\ \text { Type(total) } \\ \hline \end{array}$	\mathbf{N} predicted int (TOTAL) (crashes/year)	$\begin{gathered} \text { Proportion of } \\ \text { Collision } \\ \text { Type } \left._{(\text {FI) }}\right) \\ \hline \end{gathered}$	$\mathrm{N}_{\text {predicted it }}$ (f) () (crashes/year)	$\begin{gathered} \text { Proportion of } \\ \text { Collision Type (F1) } \end{gathered}$	N predicted int (Fl^{a}) (crashes/vear)	\qquad	$\mathbf{N}_{\text {predicted int (}}^{\text {(PDO) }}$ (${ }^{\text {(crashes/year) }}$
	from Table 11-9	(7)Total from Worksheet 2C	$\begin{gathered} \text { from Table } \\ 11-9 \end{gathered}$	(7)ff from Worksheet 2 C	from Table 11-9	(7) ${ }^{\text {FI }}$ a from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	0.999	0.663	1.000	0.281	1.001	0.155	1.001	0.382
		(2)* $\left.{ }^{*}\right)_{\text {Total }}$		(4) \times (5) ${ }_{\text {¢ }}$		${ }^{(6) *}{ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		(8)** 9$)_{\text {PDo }}$
Head-on collision	0.007	0.005	0.009	0.003	0.014	0.002	0.004	0.002
Sideswipe collision	0.010	0.007	0.009	0.003	0.010	0.002	0.013	0.005
Rear-end collision	0.245	0.163	0.264	0.074	0.167	0.026	0.217	0.083
Angle collision	0.045	0.030	0.070	0.020	0.076	0.012	0.017	0.006
Single-vehicle collision	0.119	0.079	0.117	0.033	0.129	0.020	0.121	0.046
Other collision	0.573	0.380	0.531	0.149	0.605	0.094	0.629	0.240

NOTE: a Using the KABCO scale, these include only KAB crashes. Crashes with seveity level C (possible iniun) are not induded

Worksheet 2E -- Summary Results for Rural Multilane Highway Intersections	
(1)	(2)
Crash severity level	Predicted average crash frequency (crashes / year)
	(7) from Worksheet 2C
Total	0.7
Fatal and Injury (FI)	0.3
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	0.2
Property Damage Only (PDO)	0.4

Modification Factors for Rural Multilane					
(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	CMF for Intersection Skew Angle (CMF ${ }_{1 i}$) from Equations 11-18 or 11-20 and 11-19 or 11-21	CMF for Left-Turn Lanes $\left(\mathrm{CMF}_{2 \mathrm{i}}\right)$ from Table 11-22	$\begin{gathered} \hline \text { CMF for Right-Turn Lanes } \\ \left(\mathrm{CMF}_{3 i}\right) \\ \text { from Table } 11-23 \\ \hline \end{gathered}$	CMF for Lighting $\left(\right.$ CMF $\left._{4 i}\right)$ from Equation 11-22	Combined CMF (CMF сомв) $(2)^{*}(3)^{*}(4)^{*}(5)$
Total	1.08	1.00	1.00	1.00	1.08
Fatal and Injury (FI)	1.09	1.00	1.00	1.00	1.09

Note: The 4-leg Signalized Intersection (4SG) models do not have base conditions and so can only be used for estimation purposes. As a result, there are not CMFs provided for the 4 SG condition

(1)	(2)				(4)	(5)	(6)	Predicted average crash frequency, $\mathbf{N}_{\text {predicted int }}$
Crash Severity Level	from Table 11-7 or 11-8			$\mathbf{N}_{\text {spf int }}$	Overdispersion Parameter, \mathbf{k}	Combined CMFs from (6) of Worksheet 2B	Calibration Factor, C_{i}	
	a	b	cord (4SG)	from Equation 11-11 or 11-12	from Table 11-7 or 11-8			$(3){ }^{*}(5)^{*}(6)$
Total	-10.008	0.848	0.448	2.216	0.494	1.08	0.39	0.935
Fatal and Injury (FI)	-11.554	0.888	0.525	1.017	0.742	1.09	0.39	0.432
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}^{\text {a }}$)	-10.734	0.828	0.412	0.739	0.655	1.09	0.39	0.314
Property Damage Only (PDO)	--	--	--	--	-	--	--	(7) Total $-(7)_{\text {FI }}$
								03

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Type(total)	$\mathbf{N}_{\text {prediciced int (TOTAL) }}$ (crashes/year)	Proportion of Collision Type(Fl)	$\mathbf{N}_{\text {predicted it }}$ (fy) (crashes/year)	$\begin{gathered} \text { Proportion of } \\ \text { Collision Type (} \mathrm{Fl}^{2} \text {) } \end{gathered}$	N predicted int (Fl^{a}) (crashes/vear)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted int (}}^{\text {(PDo) }}$ (${ }^{\text {(crashes/year) }}$
	from Table 11-9	(7)total from Worksheet 2C	$\begin{gathered} \text { from Table } \\ 11-9 \end{gathered}$	(7)ff from Worksheet 2 C	from Table 11-9	(7) ${ }^{\text {FI }}$ a from Worksheet 2C	from Table 11-9	(7)poo from Worksheet 2C
Total	1.000	0.935	1.000	0.432	1.001	0.314	1.001	0.503
		(2)** $)_{\text {Total }}$		(4) \times (5) ${ }_{\text {¢ }}$		${ }^{(6)}{ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		(8)** 9) PDO
Head-on collision	0.005	0.005	0.008	0.003	0.014	0.004	0.000	0.000
Sideswipe collision	0.009	0.008	0.006	0.003	0.005	0.002	0.015	0.008
Rear-end collision	0.149	0.139	0.152	0.066	0.086	0.027	0.146	0.073
Angle collision	0.380	0.355	0.427	0.184	0.466	0.146	0.318	0.160
Single-vehicle collision	0.055	0.051	0.052	0.022	0.054	0.017	0.058	0.029
Other collision	0.402	0.376	0.355	0.153	0.376	0.118	0.464	0.233

NOTE: ${ }^{a}$ Using the KABCO scale, these include only KAB crashes. Crashes with seveity level C (possible iniun) are not included

Worksheet 2E -- Summary Results for Rural Multilane Highway Intersections
(1)
Crash severity level

Worksheet 1C (b) -- Roadway Segment Crashes for Rural Multilane Undivided Roadway Segments								
(1)	(2)			$\begin{gathered} \hline(3) \\ \hline \mathbf{N} \mathbf{~ s p f ~ r s (u)} \end{gathered}$	(4) Overdispersion Parameter, k	(5)	(6)	
Crash Severity Level	SPF Coefficients					Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathrm{N}_{\text {predicted rs(}}$ () (3)** 5$)^{*}(6)$
		Table				(6) from Worksheet 1B (b)		
	a	b	c	from Equation 11-7	from Equation 11-8			
Total	-9.653	1.176	1.675	18.683	0.107	0.94	0.37	6.501
Fatal and Injury (FI)	-9.410	1.094	1.796	10.303	0.095	0.94	0.37	3.585
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	-8.577	0.938	2.003	4.810	0.077	0.94	0.37	1.674
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TotaL }}-(7)_{\text {FI }}}{2916}$

Worksheet 1D (b) -- Crashes by Severity Level and Collision Type for Rural Multilane Undivided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотац)	$\mathbf{N}_{\text {predicted }}$ rs(u) (TOTAL) (crashes/year)	Proportion of Collision Type(f)	$\mathbf{N}_{\text {predicted rss(u) (FI) }}$ (crashes/year)	Proportion of Collision Tvpe (Fla ${ }^{\text {a }}$	$\mathrm{N}_{\text {predicted rs(u) }}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{u}) \text { (PDO) }}$ (crashes/year)
	from Table 11-4	(7)total from Worksheet 1C (b)	from Table $11-4$	(7)f1 from Worksheet 1C (b)	from Table 11-4	$\begin{gathered} \hline \text { (7) } \text { FI }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-4 \end{gathered}$	(7)pDo from Worksheet 1C (b)
Total	1.000	6.501	0.999	3.585	1.000	1.674	1.000	2.916
		(2)* $\left.{ }^{*}\right)_{\text {TOTAL }}$		(4) $\times(5)_{\text {Fl }}$		(6)* ${ }^{\star}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ pdo
Head-on collision	0.040	0.260	0.083	0.298	0.118	0.198	0.012	0.035
Sideswipe collision	0.148	0.962	0.101	0.362	0.097	0.162	0.178	0.519
Rear-end collision	0.305	1.983	0.339	1.215	0.194	0.325	0.283	0.825
Angle collision	0.014	0.091	0.024	0.086	0.032	0.054	0.008	0.023
Single-vehicle collision	0.390	2.535	0.375	1.344	0.473	0.792	0.399	1.164
Other collision	0.103	0.670	0.077	0.276	0.086	0.144	0.120	0.350

NOTE: ${ }^{a}$ Using the $K A B C O$ scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	$\frac{(3)}{\text { Roadway segment length (mi) }}$	(4)
Crash severity level	Predicted average crash frequency (crashes/year)		Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	6.5	1.8	3.7
Fatal and Injury (FI)	3.6	1.8	2.0
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}{ }^{\text {a }}$)	1.7	1.8	1.0
Property Damage Only (PDO)	2.9	1.8	1.7

NOTE: ${ }^{a}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1C (b) -- Roadway Segment Crashes for Rural Multilane Undivided Roadway Segments								
(1)	(2)			(3)	(4)	(5)	(6)	(7)
Crash Severity Level	from Table 11-3			N spf rs(u)	Overdispersion Parameter, \mathbf{k}	Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs(u) }}$
				(6) from Worksheet 1B (b)				
	a	b	c		from Equation 11-7	from Equation 11-8		$(3)^{*}(5)^{*}(6)$
Total	-9.653	1.176	1.675	24.341	0.082	1.03	0.37	9.232
Fatal and Injury (FI)	-9.410	1.094	1.796	13.423	0.073	1.03	0.37	5.091
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	-8.577	0.938	2.003	6.267	0.059	1.03	0.37	2.377
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) TOTAL $-(7)_{\text {FI }}$
								4.141

Worksheet 1D (b) -- Crashes by Severity Level and Collision Type for Rural Multilane Undivided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотац)	$\mathbf{N}_{\text {predicted }}$ rs(u) (TOTAL) (crashes/year)	Proportion of Collision Type(f)	$\mathbf{N}_{\text {predicted rss(u) (FI) }}$ (crashes/year)	Proportion of Collision Tvpe (Fla ${ }^{\text {a }}$	$\mathrm{N}_{\text {predicted rs(u) }}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{u}) \text { (PDO) }}$ (crashes/year)
	from Table 11-4	(7)total from Worksheet 1C (b)	from Table $11-4$	(7)f1 from Worksheet 1C (b)	from Table 11-4	$\begin{gathered} \hline \text { (7) } \text { FI }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-4 \end{gathered}$	(7)pDo from Worksheet 1C (b)
Total	1.000	9.232	0.999	5.091	1.000	2.377	1.000	4.141
		(2)*(3) TOTAL		(4) $\times(5)_{\text {Fl }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ pdo
Head-on collision	0.040	0.369	0.083	0.423	0.118	0.281	0.012	0.050
Sideswipe collision	0.148	1.366	0.101	0.514	0.097	0.231	0.178	0.737
Rear-end collision	0.305	2.816	0.339	1.726	0.194	0.461	0.283	1.172
Angle collision	0.014	0.129	0.024	0.122	0.032	0.076	0.008	0.033
Single-vehicle collision	0.390	3.601	0.375	1.909	0.473	1.124	0.399	1.652
Other collision	0.103	0.951	0.077	0.392	0.086	0.204	0.120	0.497

NOTE: ${ }^{a}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	$\frac{(3)}{\text { Roadway segment length (mi) }}$	(4)
Crash severity level	Predicted average crash frequency (crashes/year)		Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	9.2	2.3	4.0
Fatal and Injury (FI)	5.1	2.3	2.2
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}{ }^{\text {a }}$)	2.4	2.3	1.0
Property Damage Only (PDO)	4.1	2.3	1.8

NOTE: ${ }^{a}$ Using the $K A B C O$ scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1C (b) -- Roadway Segment Crashes for Rural Multilane Undivided Roadway Segments								
(1)	(2)			(3)	(4)	(5)	(6)	(7)
Crash Severity Level	from Table 11-3			N spf rs(u)	Overdispersion Parameter, \mathbf{k}	Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs(u) }}$
				(6) from Worksheet 1B (b)				
	a	b	c		from Equation 11-7	from Equation 11-8		$(3) *$ * 5$)^{*}(6)$
Total	-9.653	1.176	1.675	16.014	0.125	1.03	0.37	6.074
Fatal and Injury (FI)	-9.410	1.094	1.796	8.831	0.111	1.03	0.37	3.349
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	-8.577	0.938	2.003	4.123	0.090	1.03	0.37	1.564
Property Damage Only (PDO)	--	--	--	--	--	--	--	(7) TOTAL $-(7)_{\text {FI }}$
								2.724

Worksheet 1D (b) -- Crashes by Severity Level and Collision Type for Rural Multilane Undivided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотац)	$\mathbf{N}_{\text {predicted }}$ rs(u) (TOTAL) (crashes/year)	Proportion of Collision Type(f)	$\mathbf{N}_{\text {predicted rss(u) (FI) }}$ (crashes/year)	Proportion of Collision Tvpe (Fla ${ }^{\text {a }}$	$\mathrm{N}_{\text {predicted rs(u) }}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{u}) \text { (PDO) }}$ (crashes/year)
	from Table 11-4	(7)total from Worksheet 1C (b)	from Table $11-4$	(7)f1 from Worksheet 1C (b)	from Table 11-4	$\begin{gathered} \hline \text { (7) } \text { FI }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-4 \end{gathered}$	(7)pDo from Worksheet 1C (b)
Total	1.000	6.074	0.999	3.349	1.000	1.564	1.000	2.724
		(2)* $\left.{ }^{*}\right)_{\text {TOTAL }}$		(4) $\times(5)_{\text {Fl }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ pdo
Head-on collision	0.040	0.243	0.083	0.278	0.118	0.185	0.012	0.033
Sideswipe collision	0.148	0.899	0.101	0.338	0.097	0.152	0.178	0.485
Rear-end collision	0.305	1.853	0.339	1.135	0.194	0.303	0.283	0.771
Angle collision	0.014	0.085	0.024	0.080	0.032	0.050	0.008	0.022
Single-vehicle collision	0.390	2.369	0.375	1.256	0.473	0.740	0.399	1.087
Other collision	0.103	0.626	0.077	0.258	0.086	0.134	0.120	0.327

NOTE: ${ }^{a}$ Using the $K A B C O$ scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	(3)	(4)
Crash severity level	Predicted average crash frequency (crashes/year)	Roadway segment length (mi)	Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	6.1	1.5	4.0
Fatal and Injury (FI)	3.3	1.5	2.2
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F} \mathrm{I}^{\text {a }}$)	1.6	1.5	1.0
Property Damage Only (PDO)	2.7	1.5	1.8

NOTE: ${ }^{a}$ Using the $K A B C O$ scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

				Location Information		
Analyst			AJG	Roadway	US 97	
Agency or Company Date Performed			$\begin{gathered} \text { KAI } \\ 01 / 30 / 14 \end{gathered}$	Roadway Section Jurisdiction	MP 130.23 to 132.29 (Deschutes Jct to Ft Thompson) ODOT	
				Analysis Year	2013	
Input Data				Base Conditions	Site Conditions	
Roadway type (divided / undivided)				Undivided	Undivided	
Length of segment, L (mi)				--	2.16	
AADT (veh/day)		$\mathrm{AADT}_{\text {max }}=$	33,200 (veh/day)	--	26,700	
Lane width (ft)				12	12	
Shoulder width (ft) - right shoulder width for divided				6	8	
Shoulder type - right shoulder type for divided				Paved	Paved	
Median width (ft) - for divided only				30	Not Applicable	
Side Slopes - for undivided only				1:7 or flatter	1:7 or Flatter	
Lighting (present/not present)				Not Present	Not Present	
Auto speed enforcement (present/not present)				Not Present	Not Present	
Calibration Factor, Cr				1.00	0.37	
Worksheet 1B (b) -- Crash Modification Factors for Rural Multilane Undivided Roadway Segments						
(1)	(2)		(3)	(4)	(5)	(6)
CMF for Lane Width	CMF for Shoulder Width		CMF for Side Slopes	CMF for Lighting	CMF for Automated Speed Enforcement	Combined CMF
CMF 1ru	CMF 2ru		CMF 3ru	CMF 4ru	CMF 5ru	CMF comb
from Equation 11-13	from Equation 11-14		from Table 11-14	from Equation 11-15	$\frac{\text { from Section 11.7.1 }}{1.00}$	$(1)^{*}(2)^{*}(3)^{*}(4)^{*}(5)$
1.00	0.94		1.00	1.00		0.94

Worksheet 1C (b) -- Roadway Segment Crashes for Rural Multilane Undivided Roadway Segments								
(1)	(2)				(4)	(5)	(6)	(7)
Crash Severity Level		Coeffic		N spf rs(u)	Overdispersion Parameter, k	Combined CMFs (6) from Worksheet 1B (b)	Calibration Factor, Cr	Predicted average crash frequency, $\mathbf{N}_{\text {predicted rs(u) }}$ (3)** 5$)^{*}$ (6)
	from Table 11-3							
	a	b	c	from Equation 11-7	from Equation 11-8			
Total	-9.653	1.176	1.675	22.273	0.087	0.94	0.37	7.750
Fatal and Injury (FI)	-9.410	1.094	1.796	12.312	0.077	0.94	0.37	4.284
Fatal and Injury ${ }^{\text {a }}\left(\mathrm{Fl}^{\text {a }}\right.$)	-8.577	0.938	2.003	5.775	0.062	0.94	0.37	2.010
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TOTAL }}-(7)_{\text {FI }}}{3.466}$

Worksheet 1D (b) -- Crashes by Severity Level and Collision Type for Rural Multilane Undivided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотац)	$\mathbf{N}_{\text {predicted }}$ rs(u) (TOTAL) (crashes/year)	Proportion of Collision Type(f)	$\mathbf{N}_{\text {predicted rss(u) (FI) }}$ (crashes/year)	Proportion of Collision Tvpe (Fla ${ }^{\text {a }}$	$\mathrm{N}_{\text {predicted rs(u) }}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{u}) \text { (PDO) }}$ (crashes/year)
	from Table 11-4	(7)total from Worksheet 1C (b)	from Table $11-4$	(7)f1 from Worksheet 1C (b)	from Table 11-4	$\begin{gathered} \hline \text { (7) } \text { FI }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-4 \end{gathered}$	(7)pDo from Worksheet 1C (b)
Total	1.000	7.750	0.999	4.284	1.000	2.010	1.000	3.466
		(2)* $\left.{ }^{*}\right)_{\text {TOTAL }}$		(4) $\times(5)_{\text {Fl }}$		(6)* ${ }^{*}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ pdo
Head-on collision	0.040	0.310	0.083	0.356	0.118	0.237	0.012	0.042
Sideswipe collision	0.148	1.147	0.101	0.433	0.097	0.195	0.178	0.617
Rear-end collision	0.305	2.364	0.339	1.452	0.194	0.390	0.283	0.981
Angle collision	0.014	0.109	0.024	0.103	0.032	0.064	0.008	0.028
Single-vehicle collision	0.390	3.023	0.375	1.607	0.473	0.951	0.399	1.383
Other collision	0.103	0.798	0.077	0.330	0.086	0.173	0.120	0.416

NOTE: ${ }^{a}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	$\frac{(3)}{\text { Roadway segment length (mi) }}$	(4)
Crash severity level	Predicted average crash frequency (crashes/year)		Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	7.8	2.2	3.6
Fatal and Injury (FI)	4.3	2.2	2.0
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}{ }^{\text {a }}$)	2.0	2.2	0.9
Property Damage Only (PDO)	3.5	2.2	1.6

NOTE: ${ }^{a}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Worksheet 1C (b) -- Roadway Segment Crashes for Rural Multilane Undivided Roadway Segments								
(1)	(2)			$\begin{gathered} \hline(3) \\ \hline \mathbf{N} \mathbf{~ s p f ~ r s (u)} \end{gathered}$	(4) Overdispersion Parameter, \mathbf{k}	(5)	(6)	
Crash Severity Level	SPF Coefficients					Combined CMFs	Calibration Factor, Cr	Predicted average crash frequency, $\mathrm{N}_{\text {predicted rs(}}$ () (3) ${ }^{*}(5)^{*}$ (6)
		Table				(6) from Worksheet 1B (b)		
	a	b	c	from Equation 11-7	from Equation 11-8			
Total	-9.653	1.176	1.675	10.623	0.208	0.99	0.37	3.881
Fatal and Injury (FI)	-9.410	1.094	1.796	5.817	0.184	0.99	0.37	2.125
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{Fl}^{\text {a }}$)	-8.577	0.938	2.003	2.680	0.150	0.99	0.37	0.979
Property Damage Only (PDO)	--	--	--	--	--	--	--	$\frac{(7)_{\text {TotaL }}-(7)_{\text {FI }}}{1.756}$

Worksheet 1D (b) -- Crashes by Severity Level and Collision Type for Rural Multilane Undivided Roadway Segments								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Collision Type	Proportion of Collision Туре(тотац)	$\mathbf{N}_{\text {predicted }}$ rs(u) (TOTAL) (crashes/year)	Proportion of Collision Type(f)	$\mathbf{N}_{\text {predicted rss(u) (FI) }}$ (crashes/year)	Proportion of Collision Tvpe (Fla ${ }^{\text {a }}$	$\mathrm{N}_{\text {predicted rs(u) }}\left(\mathrm{Fl}^{\mathrm{a}}\right)$ (crashes/year)	Proportion of Collision Type (PDO)	$\mathbf{N}_{\text {predicted } \mathrm{rs}(\mathrm{u}) \text { (PDO) }}$ (crashes/year)
	from Table 11-4	(7)total from Worksheet 1C (b)	from Table $11-4$	(7)f1 from Worksheet 1C (b)	from Table 11-4	$\begin{gathered} \hline \text { (7) } \text { FI }^{\mathrm{a}} \text { from Worksheet } \\ \text { 1C (b) } \\ \hline \end{gathered}$	$\begin{gathered} \text { from Table } \\ 11-4 \end{gathered}$	(7)pDo from Worksheet 1C (b)
Total	1.000	3.881	0.999	2.125	1.000	0.979	1.000	1.756
		(2)* $\left.{ }^{*}\right)_{\text {TOTAL }}$		(4) $\times(5)_{\text {Fl }}$		(6)* ${ }^{\star}(7)_{\text {F1 }}{ }^{\text {a }}$		$(8)^{*}(9)$ pdo
Head-on collision	0.040	0.155	0.083	0.176	0.118	0.116	0.012	0.021
Sideswipe collision	0.148	0.574	0.101	0.215	0.097	0.095	0.178	0.313
Rear-end collision	0.305	1.184	0.339	0.721	0.194	0.190	0.283	0.497
Angle collision	0.014	0.054	0.024	0.051	0.032	0.031	0.008	0.014
Single-vehicle collision	0.390	1.514	0.375	0.797	0.473	0.463	0.399	0.701
Other collision	0.103	0.400	0.077	0.164	0.086	0.084	0.120	0.211

NOTE: ${ }^{a}$ Using the $K A B C O$ scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

(1)	(2)	$\frac{(3)}{\text { Roadway segment length (mi) }}$	(4)
Crash severity level	Predicted average crash frequency (crashes/year)		Crash rate (crashes/mi/year)
	(7) from Worksheet 1C (a) or (b)		(2)/(3)
Total	3.9	0.9	4.3
Fatal and Injury (FI)	2.1	0.9	2.4
Fatal and Injury ${ }^{\text {a }}$ ($\mathrm{F}{ }^{\text {a }}$)	1.0	0.9	1.1
Property Damage Only (PDO)	1.8	0.9	2.0

NOTE: ${ }^{a}$ Using the KABCO scale, these include only $K A B$ crashes. Crashes with severity level C (possible injury) are not included.

Appendix D Improvement Costs

Appendix E Illustration of J-Turn Concept

J-Turn Concept Deschutes County, Oregon

Appendix F Median Type Comparison Costs

Median Barrier Cost Estimates

Kittelson \& Associates, Inc. (KAI) prepared planning-level cost estimates to support evaluation of median barrier treatments on US 97: Mile Point (MP) 124.40 to 133.39. Two barrier types have been evaluated to reduce crash potential. No modifications to the median or shoulder area are assumed to support the median installation.

Concrete Median Barrier

Based on Oregon Department of Transportation (ODOT) bid items (2014), KAl estimated concrete barrier installation costs at $\$ 61$ per linear foot (LF) plus $\$ 28,000$ per narrow impact attenuator. There will be no modifications to the existing pavement in the median, but assumes the precast concrete barrier being pinned to the existing road surface. However, if the concrete barrier is cast in place that requires excavation and asphalt surfacing in the median, then the unit price will increase by approximately $\$ 15-20$ per LF. The number of median barrier openings per phase determined the number of attenuators assumed per phase.

Assumptions:

- Concrete barrier pinned to existing asphalt surface
- Results in 4-foot inside shoulders
- No right-of-way (ROW) needs

Life Cycle Cost

There is limited maintenance costs associated with concrete barrier installations; however, if an impact attenuator is damaged, then it will likely be replaced with a new one.

Cable Barrier

A 3 -cable design at test level 3 is estimated to cost $\$ 15 / L F$, including posts and end anchors. This estimate is based on National Cooperative Highway Research Program (NCHRP) Report 711 Guidance for the Selection, Use, and Maintenance of Cable Barrier Systems.

Assumptions:

- $\$ 60$ per installed post and foundation at 6 -foot spacing
- \$2,500 per end anchor at 1,000-foot spacing
- No ROW needs

Life Cycle Cost

NCHRP Report 711 provides an analysis of life-cycle costs associated with installation, maintenance, repair, and disposal of cable median barrier. Values provided in Table 5.4 indicate annual life-cycle costs are only nominally greater than $\$ 15$ per linear foot, if we assume a service life of 25 years and discount rate of 6%.

Taking into account the crash experience and maintenance logs associated with the cable median barrier on Mt. Hood Highway (US 26) from MP 30.56 to MP 31.31 and MP 31.55 to MP 32.32 indicates the life-cycle costs are higher than those estimated based on NCHRP Report 711 data.

The US 26 cable median barrier was installed in August 2007. In 2012 ODOT prepared a summary of maintenance and repair work associated with this cable barrier installation in "Year Four Update of the Mt. Hood Highway Cable Barrier System." The report indicates the narrow median increases the difficulty of repairing and maintaining the barrier. As of February 2012, "all repairs include only replacing damaged posts; no cable tensioning or cable replacement has been required. Replacing posts involves a couple of people; one who pulls out the damaged post and the other lifting the cable with an auto crane. Generally, more time is involved in setting up traffic control than in replacing the posts."

The ODOT report indicates repair work has cost approximately $\$ 69,000$ over 53 months, which equates to an approximate annual cost of $\$ 10,275$ per mile. Assuming equivalent costs to repair cable median barrier on US 97, and an annual discount rate of 6\%, the cable median barrier installation and repair cost could be as high as $\$ 39.88 / L F$.

It should be noted the conceptual cost estimates provided in the US97 refinement plan includes 40\% contingencies in addition to the estimates discussed in this memorandum.

Concrete Median Barrier Summary

Phase	Benefit	Cost	B/C
1	$\$ 340,000$	$\$ 1.5$ million	2.9
2	$\$ 235,000$	$\$ 1.6$ million	1.9
3	$\$ 671,000$	$\$ 3.7$ million	2.3
4	$\$ 238,000$	$\$ 2.2$ million	1.4

Note: A uniform series present worth factor of 12.46 is applied to account for a 20 year life cycle.
Cable Median Barrier Summary

Phase	Benefit	Cost	B/C
1	$\$ 340,000$	$\$ 1.3$ million	3.3
2	$\$ 235,000$	$\$ 1.3$ million	2.4
3	$\$ 671,000$	$\$ 2.8$ million	3.0
4	$\$ 238,000$	$\$ 2.0$ million	1.5

Note: A uniform series present worth factor of 12.46 is applied to account for a 20 year life cycle.

[^0]: ${ }^{1}$ ODOT references Crash Reduction Factors, instead of Crash Modification Factors. CRFs are related to CMFs by the following equation: $C R F=1-C M F$.

[^1]: ${ }^{2}$ Edara, et al. Evaluation of J-turn Intersection Design Performance in Missouri. December 2013.

